...
首页> 外文期刊>Journal of Aircraft >Curvilinearly T-Stiffened Panel-Optimization Framework Under Multiple Load Cases Using Parallel Processing
【24h】

Curvilinearly T-Stiffened Panel-Optimization Framework Under Multiple Load Cases Using Parallel Processing

机译:使用并行处理的多种载荷工况下的曲线T型加筋面板优化框架

获取原文
获取原文并翻译 | 示例
           

摘要

Future aerospace vehicles like hybrid wing/body, truss-braced wing, and "double bubble" would have pressurized noncircular fuselage structures and complex wing geometry. Traditional aircraft designs have led to the confidence and experience of designing such structures using the knowledge base built over the years and the resulting rules of thumb. However, there is a lack of experience of load calculations and design of complex, multifunctional, aircraft structural concepts for future aerospace vehicles. Designing such structures will require a physics-based optimization framework. Therefore, a new optimization framework, EBF3PanelOpt, is being developed. Commercial software MD-PATRAN (geometry modeling and mesh generation) and MD-NASTRAN (finite-element analysis) are integrated in EBF3PanelOpt framework using the Python programming environment to design stiffened panels with curvilinear stiffeners. Currently, EBF3PanelOpt optimizes the stiffened panel with curvilinear blade stiffeners, where the loads are applied only through the plate. During the optimization, the mass is minimized with the constraints on buckling, von Mises stress, and crippling or local failure of the stiffeners. EBF3PanelOpt is enhanced to have curvilinear T stiffeners with or without axial loads in addition to loads through plate. The panel/stiffener geometry is defined in a parametric fashion based on design variables that include variables for orientation and shape of the stiffeners, the thicknesses and heights of the webs and flanges of the stiffeners, and the plate-pocket thicknesses. This framework is supported with coarse-grained parallelism using Python to analyze multiple designs on the cluster. Using this framework, a vertical stabilizer skin panel of transport aircraft panel having two extreme load cases is optimized using with or without stiffener loads. When the equivalent uniform loads are applied only through the plate, the plate buckling becomes critical, but combined buckling of plate and stiffeners becomes critical when the loads are applied through both the plate and the stiffeners. When the uniform in-plane compressive loads are applied through both the plate and the stiffeners, the panel with straight T stiffeners is more optimal than the panel with curvilinear T stiffeners.
机译:未来的航空航天飞行器,如混合机翼/机体,桁架支撑机翼和“双气泡”,将具有加压的非圆形机身结构和复杂的机翼几何形状。传统的飞机设计已经产生了使用多年积累的知识库和由此产生的经验法则来设计此类结构的信心和经验。但是,缺乏用于未来航空航天器的载荷计算和复杂,多功能飞机结构概念设计的经验。设计此类结构将需要基于物理的优化框架。因此,正在开发一个新的优化框架EBF3PanelOpt。使用Python编程环境将商业软件MD-PATRAN(几何建模和网格生成)和MD-NASTRAN(有限元分析)集成到EBF3PanelOpt框架中,以设计具有曲线加劲肋的加劲板。当前,EBF3PanelOpt使用曲线叶片加劲肋来优化加劲板,其中载荷仅通过板施加。在优化过程中,通过屈曲,冯·米塞斯应力以及加劲肋的屈曲或局部破坏的约束,使质量最小化。 EBF3PanelOpt进行了增强,使其具有曲线T型加劲肋,除了穿过板的载荷外,还带有或不带有轴向载荷。面板/加劲肋的几何形状是基于设计变量而定义的,这些设计变量包括加劲肋的方向和形状,加劲肋的腹板和凸缘的厚度和高度以及板袋厚度的变量。使用Python来分析集群上的多个设计,并通过粗粒度并行性支持该框架。使用此框架,可以在有或没有加劲肋载荷的情况下优化具有两个极端载荷情况的运输飞机面板的垂直稳定器蒙皮面板。当仅通过板施加等效的均匀载荷时,板的屈曲变得很关键,但是当同时通过板和加劲肋施加载荷时,板和加劲肋的组合屈曲变得至关重要。当通过板和加劲肋施加均匀的平面内压缩载荷时,具有笔直T形加劲肋的面板比具有曲线T形加劲肋的面板更好。

著录项

  • 来源
    《Journal of Aircraft》 |2013年第5期|1540-1554|共15页
  • 作者单位

    Research Scientist, Department of Aerospace and Ocean Engineering. Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0203;

    Research Assistant, Department of Computer Science and Engineering. Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0203;

    Mitchell Professor, Department of Aerospace and Ocean Engineering. Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0203;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号