首页> 外文期刊>Journal of Analytical & Applied Pyrolysis >Pyrolysis mechanism and thermal degradation kinetics of poly(bisphenol A carbonate)-based polymers originating in waste electric and electronic equipment
【24h】

Pyrolysis mechanism and thermal degradation kinetics of poly(bisphenol A carbonate)-based polymers originating in waste electric and electronic equipment

机译:聚(双酚碳酸盐碳酸盐)的热解机理和热降解动力学,基于废物电气设备的基于聚合物

获取原文
获取原文并翻译 | 示例
           

摘要

Poly(bisphenol A carbonate) or polycarbonate (PC) constitutes a significant fraction of the Waste Electrical and Electronic Equipment, mainly due to its high production and consumption rate and its variety of applications. Traditional methods for its treatment no longer appear to provide long-term solutions and for this reason, the investigation of thermochemical methods and more specifically pyrolysis as a potential recycling method took place in the current study. In the first part of this study, pyrolysis studies of polycarbonate have been performed in a Pyrolizer equipped with GC-MS, at five different reactor temperatures, in order to facilitate the understanding of the degradation mechanism. Higher pyrolysis temperatures were found to be more suitable for PC pyrolysis, since they increased the volatile fractions (liquid and gaseous). The gaseous fraction consisted mainly of CO2, CH4 and CO, whereas in the liquid fraction a large amount of different phenolic compounds, including the monomer bisphenol A was recorded. Based on the findings, it has been suggested that the main degradation pathway follows a chain scission mechanism and that the scission of the isopropylidene linkage is the first step. Phenols and phenolic compounds were formed through a series of scission and hydrolysis reactions. In the second part, pyrolysis kinetics of PC are investigated in detail using thermogravimetric experimental data, collected at several heating rates and several either model-free (isoconversional) or model-fitting models. From the isoconversional kinetic analysis the effective activation energy was fund to increase with the extent of conversion, ranging from 146 to 189 kJ/mol and from 154 to 215 kJ/mol, when using the integral method of Tang (similar to the KAS) or the differential method of Friedman, respectively. A simple first order kinetic model was found to simulate excellent the experimental data, though predicting different activation energies and pre exponential factors at each heating rate employed. The random scission and the autocatalytic models were investigated in detail and the best fit to the experimental data at all different heating rates was found to be the autocatalytic model with n = 1.15 and m = 0.46 (values close to those considered for the random scission model with L = 2, i.e. n = 1.119 and in = 0.4) using an average activation energy, E = 195.9 kJ/mol and pre-exponential factor A = 6.06 10(12) min(-1). Having a detailed knowledge of the PC degradation kinetics and mechanism will help in better design of large scale process for the recycling of such material originating in WEEE and provide targeted value-added products.
机译:聚(双酚A碳酸盐)或聚碳酸酯(PC)构成废物电气和电子设备的大部分,主要是由于其高生产和消耗率及其各种应用。其治疗方法不再似乎提供长期解决方案,因此,在目前的研究中发生了热化学方法和更具体地热解的研究。在本研究的第一部分中,在配备有GC-MS的昏甘油器中,在五个不同的反应器温度下进行热解性研究,以便于理解降解机制。发现较高的热解温度更适合于Pc热解,因为它们增加了挥发性级分(液体和气态)。气态馏分主要由CO 2,CH 4和CO组成,而在液体级分中,在大量的不同酚类化合物中,记录包括单体双酚A.基于调查结果,已经提出了主要的降解途径遵循链裂殖机制,并且异丙基键的裂变是第一步。通过一系列裂殖和水解反应形成酚和酚类化合物。在第二部分中,使用热量标量实验数据对PC的热解动力学进行详细研究,以几种加热速率收集,几种无模型(异组)或模型拟合模型。从等核官能的动力学分析,有效的激活能量是基金随着转化程度而增加,从146到189 kJ / mol和154到215 kJ / mol时,使用唐的整体方法(类似于Kas)或弗里德曼的差分方法。发现了一个简单的第一阶动力学模型来模拟优异的实验数据,但是在所采用的每个加热速率下预测不同的激活能量和预指数因素。随机调查和自催化模型进行详细研究,并最适合于所有不同的加热速率的实验数据是具有n = 1.15和m = 0.46的自催化模型(靠近随机群模型考虑的值。使用平均激活能量,即N = 1.119和In = 0.4),E = 195.9kJ / mol和预指向因子A = 6.06 10(12)分钟(-1)。详细了解PC降解动力学和机制将有助于更好地设计用于源自WEEE的这种材料的大规模过程,并提供靶向增值产品。

著录项

  • 来源
    《Journal of Analytical & Applied Pyrolysis》 |2018年第6期|123-133|共11页
  • 作者单位

    King Fahd Univ Petr & Minerals Chem Dept Dhahran 31261 Saudi Arabia|King Fahd Univ Petr & Minerals Ctr Excellence Nanotechnol CENT Dhahran 31261 Saudi Arabia;

    King Fahd Univ Petr & Minerals Chem Engn Dept Dhahran 31261 Saudi Arabia;

    Aristotle Univ Thessaloniki Dept Chem Lab Polymer Chem & Technol Thessaloniki 54124 Greece;

    Aristotle Univ Thessaloniki Dept Chem Lab Polymer Chem & Technol Thessaloniki 54124 Greece;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Polycarbonate; Pyrolysis; WEEE; Degradation; Kinetics;

    机译:聚碳酸酯;热解;WEEE;降解;动力学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号