...
首页> 外文期刊>Journal of Applied Physics >Impact of TaO_x nanolayer at the GeSe_x/W interface on resistive switching memory performance and investigation of Cu nanofilament
【24h】

Impact of TaO_x nanolayer at the GeSe_x/W interface on resistive switching memory performance and investigation of Cu nanofilament

机译:TaO_x纳米层在GeSe_x / W界面上对电阻开关存储性能的影响以及Cu纳米丝的研究

获取原文
获取原文并翻译 | 示例
           

摘要

The impact of a TaO_x nanolayer at the GeSe_x/W interface on the performance of resistive switching memory in an Al/Cu/GeSe_x/TaO_x/W structure has been examined. All materials and the memory structure have been investigated using high-resolution transmission electron microscopy, energy dispersive x ray spectroscopy, and x ray photo-electron spectroscopy analyses. A conically shaped crystalline Cu (111) nanofilament with a diameter of around 17 nm in the TaO_x nanolayer after a current compliance (CC) of 500 μA has been observed, and this has been also characterized by fast Fourier transform. The low resistance state (LRS) decreases as the current compliances (CCs) increased from 1 nA to 1 mA, since the nanofilament diameter increased from 0.04 to 23.4 nm. This is also estimated by bipolar resistive switching characteristics. The resistivity of this crystalline Cu nanofilament is approximately 2300 μΩ.cm. The nanofilament has a cylindrical shape, with CCs ranging from 1 nA to 10 μA and a conical shape with CCs ranging from 50 μA-1 mA. The resistive switching mechanism has been explained successfully under SET and RESET operations. Improved resistive switching parameters, such as SET voltage, LRS, and high resistance state with consecutive switching cycles are obtained and compared to those of pure GeSe_x and TaO_x materials. Extrapolated, long program/erase endurance of > 10~6 cycles, attributed to the Al/Cu/GeSe_x/TaO_x/W structure design, is observed. This resistive switching memory structure shows extrapolated 10 years data retention with a resistance ratio of > 10 at a low CC of 0.1 μA at 50 ℃. A large memory size of ~ 6 Pbit/sq. in. is obtained, considering the nanofilament diameter at a low CC of 0.1 μA. This study is important not only for improving the performance of low-power resistive switching memory, but also helpful for designing other nonvolatile memory devices.
机译:已经研究了在GeSe_x / W界面上的TaO_x纳米层对Al / Cu / GeSe_x / TaO_x / W结构中的电阻式开关存储器的性能的影响。使用高分辨率透射电子显微镜,能量色散X射线光谱和X射线光电子光谱分析对所有材料和存储结构进行了研究。在TaO_x纳米层中,经过500μA的电流顺应性(CC)后,直径约为17 nm的圆锥形结晶Cu(111)纳米丝已经被观察到,并且还具有快速傅里叶变换的特征。低阻抗状态(LRS)随着电流顺应性(CCs)从1 nA增加到1 mA而降低,因为纳米丝直径从0.04 nm增加到23.4 nm。这也可以通过双极电阻开关特性来估算。该晶体Cu纳米丝的电阻率约为2300μΩ.cm。纳米丝具有圆柱形状,CC范围为1 nA至10μA,圆锥形形状,CC范围为50μA-1mA。电阻切换机制已在SET和RESET操作下成功解释。获得了具有连续开关周期的改进的电阻开关参数,例如SET电压,LRS和高电阻状态,并将其与纯GeSe_x和TaO_x材料的参数进行了比较。观察到,归因于Al / Cu / GeSe_x / TaO_x / W结构设计,外推的,较长的编程/擦除耐久性> 10〜6个周期。这种电阻式开关存储器结构显示了在50℃下以0.1μA的低CC电阻率大于10的情况下推断的10年数据保留。 〜6 Pbit / sq的大存储容量。考虑到在0.1μA的低CC下的纳米丝直径,可以得到100英寸的电流。这项研究不仅对改善低功耗电阻式开关存储器的性能很重要,而且对设计其他非易失性存储器件也有帮助。

著录项

  • 来源
    《Journal of Applied Physics》 |2012年第6期|p.063710.1-063710.8|共8页
  • 作者单位

    Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, Tao-Yuan,Taiwan 333, Taiwan;

    Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, Tao-Yuan,Taiwan 333, Taiwan;

    Electronics and Opto-Electronic Research Laboratories, Industrial Technology Research Institute,Hsinchu 310, Taiwan;

    Electronics and Opto-Electronic Research Laboratories, Industrial Technology Research Institute,Hsinchu 310, Taiwan;

    Electronics and Opto-Electronic Research Laboratories, Industrial Technology Research Institute,Hsinchu 310, Taiwan;

    Materials Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan;

    Electronics and Opto-Electronic Research Laboratories, Industrial Technology Research Institute,Hsinchu 310, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号