首页> 外文期刊>Journal of Applied Physics >Quantum mechanical simulation of electronic transport in nanostructured devices by efficient self-consistent pseudopotential calculation
【24h】

Quantum mechanical simulation of electronic transport in nanostructured devices by efficient self-consistent pseudopotential calculation

机译:高效自洽伪势计算在纳米结构器件中电子传输的量子力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

We present a new empirical pseudopotential (EPM) calculation approach to simulate the million atom nanostructured semiconductor devices under potential bias using periodic boundary conditions. To treat the nonequilibrium condition, instead of directly calculating the scattering states from the source and drain, we calculate the stationary states by the linear combination of bulk band method and then decompose the stationary wave function into source and drain injecting scattering states according to an approximated top of the barrier splitting (TBS) scheme based on physical insight of ballistic and tunneling transports. The decomposed electronic scattering states are then occupied according to the source/drain Fermi-Levels to yield the occupied electron density which is then used to solve the potential, forming a self-consistent loop. The TBS is tested in a one-dimensional effective mass model by comparing with the direct scattering state calculation results. It is also tested in a three-dimensional 22 nm double gate ultra-thin-body field-effect transistor study, by comparing the TBS-EPM result with the nonequilibrium Green's function tight-binding result. We expected the TBS scheme will work whenever the potential in the barrier region is smoother than the wave function oscillations and it does not have local minimum, thus there is no multiple scattering as in a resonant tunneling diode, and when a three-dimensional problem can be represented as a quasi-one-dimensional problem, e.g., in a variable separation approximation. Using our approach, a million atom nonequilibrium nanostructure device can be simulated with EPM on a single processor computer.
机译:我们提出了一种新的经验伪势能(EPM)计算方法,以使用周期性边界条件在势能偏差下模拟百万原子纳米结构的半导体器件。为了处理非平衡条件,我们不是直接从源极和漏极计算散射状态,而是通过体能带方法的线性组合来计算稳态,然后根据近似值将稳态波函数分解为源极和漏极注入散射状态基于对弹道和隧道运输的物理洞察力的屏障拆分(TBS)方案的顶部。然后根据源/漏费米能级占据分解的电子散射态,以产生占据的电子密度,然后将其用于求解电势,形成自洽回路。通过与直接散射状态计算结果进行比较,以一维有效质量模型测试了TBS。通过比较TBS-EPM结果与非平衡Green功能紧密结合结果,还在三维22 nm双栅极超薄体场效应晶体管研究中对其进行了测试。我们预计,只要势垒区中的电势比波函数振荡更平滑并且没有局部最小值,TBS方案就可以工作,因此不会像共振隧穿二极管那样出现多重散射,并且当三维问题可以被表示为准一维问题,例如,以变量分离近似。使用我们的方法,可以在一台处理器计算机上用EPM模拟一百万个原子的非平衡纳米结构器件。

著录项

  • 来源
    《Journal of Applied Physics》 |2011年第5期|p.665-674|共10页
  • 作者单位

    State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China;

    State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China;

    State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China;

    Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号