首页> 外文期刊>Journal of Applied Physics >Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH_4/H_2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth
【24h】

Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH_4/H_2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth

机译:使用热丝化学气相沉积和Ar / CH_4 / H_2气体混合物沉积超纳米晶金刚石膜的实验和建模:超纳米晶金刚石生长的一般机制

获取原文
获取原文并翻译 | 示例
           

摘要

Ar/CH_4/H_2 gas mixtures have been used to deposit nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD) films using hot filament (HF) chemical vapor deposition. The Ar:H_2 concentration was maintained at Ar/(H_2+Ar) = 80% while the CH_4 concentration was varied over the range CH_4/(H_2 + CH_4)=0.3-6.0. For higher methane concentrations, the filament became coated in a graphitic layer which prevented film growth. For lower CH_4 additions, the film morphology depended upon the CH_4 concentration, with different gas mixing ratios producing microcrystalline diamond (MCD), NCD, or UNCD films. A two-dimensional computer model was used to calculate the gas phase composition for all these conditions at all positions within the reactor. Using the experimental and calculated data, we show that the observed film morphology can be rationalized using a model based on competition between H atoms, CH_3 radicals, and other C_1 species reacting with dangling bonds on the surface. The relative concentrations of each of these species close to the growing diamond surface determine the probability of a renucleation event occurring and hence the morphology of the subsequent film. This has been developed into a general mechanism for the deposition of MCD, NCD, and UNCD films from Ar/CH_4/H_2 gas mixtures which is consistent with published experimental observations.
机译:Ar / CH_4 / H_2气体混合物已用于通过热丝(HF)化学气相沉积法沉积纳米晶金刚石(NCD)和超纳米晶金刚石(UNCD)膜。 Ar:H_2的浓度保持在Ar /(H_2 + Ar)= 80%,而CH_4的浓度在CH_4 /(H_2 + CH_4)= 0.3-6.0的范围内变化。对于更高的甲烷浓度,长丝被涂在石墨层中,这阻止了膜的生长。对于较低的CH_4添加量,膜的形态取决于CH_4的浓度,不同的气体混合比会产生微晶金刚石(MCD),NCD或UNCD膜。使用二维计算机模型来计算反应器内所有位置上所有这些条件的气相组成。使用实验和计算的数据,我们表明可以使用基于H原子,CH_3自由基和其他与表面上悬挂键反应的C_1物种之间竞争的模型来合理化所观察的薄膜形态。这些种类中每个种类的相对浓度接近生长中的钻石表面,可确定发生再成核事件的可能性,从而确定后续膜的形态。这已发展成为从Ar / CH_4 / H_2气体混合物中沉积MCD,NCD和UNCD膜的通用机制,这与已发表的实验观察结果一致。

著录项

  • 来源
    《Journal of Applied Physics》 |2006年第2期|p.024301.1-024301.9|共9页
  • 作者

    P. W. May; Yu. A. Mankelevich;

  • 作者单位

    School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用物理学;计量学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号