...
首页> 外文期刊>Journal of Applied Physics >Ultrashort XUV pulse absorption spectroscopy of partially oxidized cobalt nanoparticles
【24h】

Ultrashort XUV pulse absorption spectroscopy of partially oxidized cobalt nanoparticles

机译:部分氧化钴纳米粒子的超短XUV脉冲吸收光谱

获取原文
获取原文并翻译 | 示例
           

摘要

High-order harmonic generation (HHG) based transient extreme ultraviolet (XUV) absorption spectroscopy is an emerging technique to trace photoinduced charge carrier dynamics in condensed phase materials with femtosecond and even attosecond temporal resolution and elemental specificity. However, its application to nanoparticulate samples that are relevant, for example, for novel photocatalytic light harvesting concepts, has been limited. This is in part due to the challenge to produce residual-free samples on ultrathin, XUV-transparent substrates as well as a widespread understanding that sparsely distributed nanoparticles do not provide sufficient contrast for XUV absorption measurements. Here, we present static XUV absorption spectra of partially oxidized Co nanowire-structures with diameters of approximately 4.5 nm and lengths between 10 and 40 nm, recorded with an ultrashort pulse HHG light source. Nanoparticles are synthesized by the agglomeration of Co atoms inside superfluid helium droplets, followed by surface deposition and oxidation in ambient air. The method is uniquely suited for residual-free synthesis of transition metal nanowires and their deposition on ultrathin substrates. Analysis by high-resolution transmission electron microscopy reveals the formation of CoO nanowires with regions of unoxidized Co in their interior. The nanoparticle samples are investigated in an HHG-driven ultrafast XUV absorption setup. Despite the low surface coverage of only 23%, the recorded spectrum exhibits a distinct absorption feature at the Co M_(2,3)(2p) edge near 60 eV with a peak height of about 40 mOD. The results support the feasibility of table-top ultrafast transient XUV absorption studies of photoinduced dynamics in transition metal oxide nanoparticles with sub-monolayer surface coverage.
机译:基于高阶谐波产生(HHG)的瞬时极端紫外(XUV)吸收光谱是一种新兴技术,用于用FemtoSecond甚至AtosoSecond暂时分辨率和元素特异性地追溯凝结相材料中的光导电载体动力学。然而,它适用于纳米颗粒样品,例如用于新型光催化光收获概念,受到限制。这部分是由于在超薄,XUV - 透明基板上产生残留的样品以及稀疏分布的纳米颗粒的普遍理解,这部分是由于挑战,稀疏分布的纳米颗粒不提供足够的XUV吸收测量对比度。这里,我们将部分氧化的Co纳米线结构的静态XUV吸收光谱呈现大约4.5nm的直径,并且在10至40nm之间的长度,用超短脉冲HHG光源记录。通过超氟氦液滴内的CO原子的附聚合成纳米颗粒,然后在环境空气中进行表面沉积和氧化。该方法非常适合于过渡金属纳米线的残留合成及其对超薄底物的沉积。高分辨率透射电子显微镜分析显示COO纳米线与其内部未氧化CO的区域的形成。在HHG驱动的超快XUV吸收设置中研究了纳米粒子样品。尽管表面覆盖率仅为23%,但记录的光谱在CO M_(2,3)(2P)边缘处具有明显的吸收特征,靠近60eV,峰值高度为约40 mod。结果支持具有亚单层表面覆盖的过渡金属氧化物纳米粒子中光诱导动力学的台式超快XUV吸收研究的可行性。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第18期|184303.1-184303.7|共7页
  • 作者单位

    Institute of Experimental Physics Graz University of Technology Petersgasse 16 8010 Graz Austria;

    Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA;

    Institute of Electron Microscopy and Nanoanalysis and Graz Centre for Electron Microscopy Graz University of Technology Steyrergasse 17 8010 Graz Austria;

    Institute of Experimental Physics Graz University of Technology Petersgasse 16 8010 Graz Austria;

    Institute of Experimental Physics Graz University of Technology Petersgasse 16 8010 Graz Austria;

    Institute of Experimental Physics Graz University of Technology Petersgasse 16 8010 Graz Austria;

    Institute of Electron Microscopy and Nanoanalysis and Graz Centre for Electron Microscopy Graz University of Technology Steyrergasse 17 8010 Graz Austria;

    Institute of Experimental Physics Graz University of Technology Petersgasse 16 8010 Graz Austria;

    Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA;

    Institute of Experimental Physics Graz University of Technology Petersgasse 16 8010 Graz Austria;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号