...
首页> 外文期刊>Journal of Applied Physics >Studies on DC transport and terahertz conductivity of granular molybdenum thin films for microwave radiation detector applications
【24h】

Studies on DC transport and terahertz conductivity of granular molybdenum thin films for microwave radiation detector applications

机译:微波辐射探测器应用的粒状钼薄膜直流传输和太赫兹电导率的研究

获取原文
获取原文并翻译 | 示例
           

摘要

The morphological, transport, and terahertz optical properties of DC magnetron-sputtered granular molybdenum thin films with nano-grains embedded in an amorphous molybdenum/molybdenum oxide matrix have been studied in their normal and superconducting states. The superconducting transition temperatures of these films are much higher than that of bulk molybdenum. The optical properties of these thin films have been studied using terahertz time-domain spectroscopy. Their properties have been compared with those of the existing materials used for the development of radiation detectors. The films' resistivity lies in the >100 μΩ cm range, ideal for making highly sensitive radiation detectors. Hall measurements indicate holes as the dominant carriers with very small mean free path and mobility. In the normal state, the films are disordered bad metals. However, they have a large superfluid density and stiffness in their superconducting state. The properties of the films in the normal and superconducting states are promising for their use in cryogenic radiation detectors for microwave, terahertz, and far-infrared frequency ranges.
机译:在正常和超导状态下,研究了与嵌入无定形钼/氧化钼基质中的纳米颗粒的DC磁控溅射粒状钼薄膜的形态学,运输和太赫兹光学性能。这些薄膜的超导过渡温度远高于散装钼的过渡温度。已经使用太赫兹时域光谱研究了这些薄膜的光学性质。它们的性质与用于开发辐射探测器的现有材料进行比较。薄膜的电阻率位于>100μΩcm范围内,非常适合制造高度敏感的辐射探测器。霍尔测量表明孔作为具有非常小的平均自由路径和移动性的主导载体。在正常状态下,薄膜是错误的不良金属。然而,它们在超导状态下具有大的超流体密度和刚度。正常和超导状态中薄膜的性质是对微波,太赫兹和远红外频率范围的低温辐射探测器的使用。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第18期|183901.1-183901.12|共12页
  • 作者单位

    Free Electron Laser Utilization Laboratory Raja Ramanna Centre for Advanced Technology Indore 452013 India;

    Free Electron Laser Utilization Laboratory Raja Ramanna Centre for Advanced Technology Indore 452013 India;

    Condensed Matter Physics Division Materials Science Croup Indira Gandhi Centre for Atomic Research Kalpakkam 603102 India Homi Bhabha National Institute IGCAR Kalpakkam 603102 India;

    Condensed Matter Physics Division Materials Science Croup Indira Gandhi Centre for Atomic Research Kalpakkam 603102 India Homi Bhabha National Institute IGCAR Kalpakkam 603102 India;

    Free Electron Laser Utilization Laboratory Raja Ramanna Centre for Advanced Technology Indore 452013 India Homi Bhabha National Institute Training School Complex Anushaktinagar Mumbai 400094 India;

    Nano Science Laboratory Materials Science Section Raja Ramanna Centre for Advanced Technology Indore 452013 India Homi Bhabha National Institute Training School Complex Anushaktinagar Mumbai 400094 India;

    Condensed Matter Physics Division Materials Science Croup Indira Gandhi Centre for Atomic Research Kalpakkam 603102 India Homi Bhabha National Institute IGCAR Kalpakkam 603102 India;

    Free Electron Laser Utilization Laboratory Raja Ramanna Centre for Advanced Technology Indore 452013 India Homi Bhabha National Institute Training School Complex Anushaktinagar Mumbai 400094 India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号