...
首页> 外文期刊>Journal of Applied Physics >Metal-insulator switching of vanadium dioxide for controlling spin-wave dynamics in magnonic crystals
【24h】

Metal-insulator switching of vanadium dioxide for controlling spin-wave dynamics in magnonic crystals

机译:二氧化钒用于控制韧性晶体旋转波动动力学的金属绝缘子

获取原文
获取原文并翻译 | 示例
           

摘要

The present work focuses on the effect of vanadium dioxide (VO_2) films exhibiting a metal-insulator transition (MIT) on the performance characteristics of the magnetic multilayers. It has been shown that the Mir provides a novel mechanism for controlling the microwave spin-wave dynamics in the yttrium iron garnet (YIG) films. In particular, the low and high levels of microwave attenuation of spin waves transmitted through the YIG-VO_2 bilayer has been observed due to a variation of the VO_2 conductivity within a narrow temperature range. This effect has been utilized to realize fully reconfigurable magnonic crystals composed of the thickness-modulated YIG and regular VO_2 films. A promising functionality of the proposed waveguiding structures arises from a controllability of wave intensity, which provides an altering of the frequency response from an original band structure to a full rejection of spin waves. Numerical simulations taking into account both the YIG film saturation magnetization and the VO_2 film conductivity have confirmed the experimentally observed spin-wave dynamics. An interest in ferrite-VO_2 bilayers arises not only from possible practical applications but also from a variety of fundamental scientific problems devoted to the physics of wave phenomena in planar thin-film magnetic multilayers.
机译:本作者侧重于在磁性多层的性能特征上表现出金属绝缘体过渡(MIT)的二氧化钒(VO_2)膜的效果。已经表明,MIR提供了一种用于控制钇铁石榴石(YIG)薄膜中的微波旋转波动态的新机制。特别地,由于VO_2导电率在窄温度范围内的变化,已经观察到通过YIG-VO_2双层传递的旋转波的低水平和高水平的微波衰减。这种效果已经利用来实现由厚度调制的YIG和常规VO_2膜组成的完全可重新配置的橡胶晶体。所提出的波导结构的有希望的功能源于波强度的可控性,这提供了从原始带结构的频率响应改变到完全抑制旋转波的频率响应。考虑到YIG膜饱和磁化强度的数值模拟和VO_2膜导电性已经证实了实验观察到的旋转波动态。对铁氧体-VO_2双层的兴趣不仅可以从可能的实际应用中产生,而且来自致力于平面薄膜磁性多层的波现象物理学的各种基本科学问题。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第18期|183902.1-183902.10|共10页
  • 作者单位

    Department of Physical Electronics and Technology St. Petersburg Electrotechnical University 197376 St. Petersburg Russia;

    Department of Physical Electronics and Technology St. Petersburg Electrotechnical University 197376 St. Petersburg Russia;

    Department of Physical Electronics and Technology St. Petersburg Electrotechnical University 197376 St. Petersburg Russia;

    Department of Physical Electronics and Technology St. Petersburg Electrotechnical University 197376 St. Petersburg Russia;

    Department of Physics LUT University 53850 Lappeenranta Finland;

    Department of Physical Electronics and Technology St. Petersburg Electrotechnical University 197376 St. Petersburg Russia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号