...
首页> 外文期刊>Journal of Applied Physics >Densification of single-walled carbon nanotube films: Mesoscopic distinct element method simulations and experimental validation
【24h】

Densification of single-walled carbon nanotube films: Mesoscopic distinct element method simulations and experimental validation

机译:单壁碳纳米管膜的致密化:介观不同元素法模拟和实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

Nanometer-thin single-walled carbon nanotube (CNT) films collected from the aerosol chemical deposition reactors have gathered attention for their promising applications. Densification of these pristine films provides an important way to manipulate mechanical, electronic, and optical properties. To elucidate the underlying microstructural level restructuring, which is ultimately responsible for the change in properties, we perform large scale vector-based mesoscopic distinct element method simulations in conjunction with electron microscopy and spectroscopic ellipsometry characterization of pristine and densified films by drop-cast volatile liquid processing. Matching with the microscopy observations, pristine CNT films with a finite thickness are modeled as self-assembled CNT networks comprising entangled dendritic bundles with branches extending down to individual CNTs. Simulations of these films under uniaxial compression uncover a soft deformation regime extending up to an ~75% strain. When removing the loads, the pre-compressed samples evolve into homogeneously densified films with thickness values depending on both the pre-compression level and the sample microstructure. The significant reduction in thickness is attributed to the underlying structural changes occurring at the 100 nm scale, including the zipping of the thinnest dendritic branches.
机译:从气溶胶化学沉积反应器中收集的纳米薄的单壁碳纳米管(CNT)薄膜为其有前途的应用感到了关注。这些原始薄膜的致密化提供了操纵机械,电子和光学性质的重要方法。为了阐明最终负责性能变化的潜在的微观结构水平重组,我们通过滴浇注挥发液结合电子显微镜和致密薄膜的电子显微镜和光谱椭圆形表征进行大规模的载体的介型不同元素方法模拟加工。与显微镜观察相匹配,具有有限厚度的原始CNT膜被建模为自组装的CNT网络,包括缠结的树枝状束,该树枝状束与延伸到单独的CNT的分支。单轴压缩下这些薄膜的模拟揭示延伸到〜75%菌株的软变形状态。当移除负载时,预压缩样品根据预压缩水平和样品微观结构,将预压缩的样品进化成具有厚度值的均匀致密的薄膜。厚度的显着降低归因于在100nm刻度下发生的潜在结构变化,包括最薄的树突分支的倾斜。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第18期|184701.1-184701.18|共18页
  • 作者单位

    Scientific Computation Program University of Minnesota Twin Cities Minnesota 55455 USA;

    Multi-Scale Mechanics Faculty of Engineering Technology MESA+ University of Twente 7500 AE Enschede Netherlands Skolkovo Institute of Science and Technology Nobel Str. 3 121205 Moscow Russia;

    Department of Aerospace Engineering and Mechanics University of Minnesota Twin Cities Minnesota 55455 USA Key Laboratory of Mechanical Reliability for Heavy Equipment and Large Structures of Hebei Province Yanshan University Qinhuangdao 066004 China;

    Department of Integrated Engineering Minnesota State University Mankato Minnesota 56001 USA;

    Scientific Computation Program University of Minnesota Twin Cities Minnesota 55455 USA Department of Aerospace Engineering and Mechanics University of Minnesota Twin Cities Minnesota 55455 USA Department of Mechanical Engineering University of Minnesota Twin Cities Minnesota 55455 USA;

    Skolkovo Institute of Science and Technology Nobel Str. 3 121205 Moscow Russia Moscow Institute of Physics and Technology Dolgoprudny Institute Lane 9 Moscow 141701 Russia;

    Department of Applied Physics Aalto University School of Science Fl-00076 Aalto Finland;

    Skolkovo Institute of Science and Technology Nobel Str. 3 121205 Moscow Russia;

    Center for Photonics and 2D Materials Moscow Institute of Physics and Technology Dolgoprudny 141700 Russia;

    Center for Photonics and 2D Materials Moscow Institute of Physics and Technology Dolgoprudny 141700 Russia;

    Department of Computer Science Friedrich-Alexander University Erlangen-Nuremberg Cauerstr. 11 Erlangen 91052 Germany;

    Department of Computer Science Friedrich-Alexander University Erlangen-Nuremberg Cauerstr. 11 Erlangen 91052 Germany;

    Skolkovo Institute of Science and Technology Nobel Str. 3 121205 Moscow Russia Department of Materials Science and Engineering Aalto University Aalto 00076 Finland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号