...
首页> 外文期刊>Journal of Applied Physics >Deducing transport properties of mobile vacancies from perovskite solar cell characteristics
【24h】

Deducing transport properties of mobile vacancies from perovskite solar cell characteristics

机译:从钙钛矿太阳能电池特征推出移动空缺的运输属性

获取原文
获取原文并翻译 | 示例
           

摘要

The absorber layers in perovskite solar cells possess a high concentration of mobile ion vacancies. These vacancies undertake thermally activated hops between neighboring lattice sites. The mobile vacancy concentration N_0 is much higher and the activation energy E_A for ion hops is much lower than is seen in most other semiconductors due to the inherent softness of perovskite materials. The timescale at which the internal electric field changes due to ion motion is determined by the vacancy diffusion coefficient D_v and is similar to the timescale on which the external bias changes by a significant fraction of the open-circuit voltage at typical scan rates. Therefore, hysteresis is often observed in which the shape of the current-voltage, J-V, characteristic depends on the direction of the voltage sweep. There is also evidence that this defect migration plays a role in degradation. By employing a charge transport model of coupled ion-electron conduction in a perovskite solar cell, we show that E_A for the ion species responsible for hysteresis can be obtained directly from measurements of the temperature variation of the scan-rate dependence of the short-circuit current and of the hysteresis factor H. This argument is validated by comparing E_A deduced from measured J-V curves for four solar cell structures with density functional theory calculations. In two of these structures, the perovskite is MAPbI_3, where MA is methylammonium, CH3NH3; the hole transport layer (HTL) is spiro (spiro-OMeTAD, 2,2',7,7'- tetrakis[N,N-di(4-methoxyphenyl) amino]-9,9'-spirobifluorene) and the electron transport layer (ETL) is TiO_2 or SnO_2. For the third and fourth structures, the perovskite layer is FAPbI_3, where FA is formamidinium, HC(NH_2)_2, or MAPbBr_3, and in both cases, the HTL is spiro and the ETL is SnO_2. For all four structures, the hole and electron extracting electrodes are Au and fluorine doped tin oxide, respectively. We also use our model to predict how the scan rate dependence of the power conversion efficiency varies with E_A, N_0, and parameters determining free charge recombination.
机译:Perovskite太阳能电池中的吸收层具有高浓度的移动离子空位。这些空位在相邻的晶格部位之间进行了热活化的跳跃。移动空位浓度N_0要高得多,并且由于钙钛矿材料的固有柔软性,离子跳的激活能量E_A远低于大多数其他半导体。由离子运动引起的内部电场改变的时间尺度由空位扩散系数D_V确定,并且类似于外部偏置在典型扫描速率下的开路电压的大部分变化的时间尺度。因此,通常观察到滞后,其中电流电压J-V的特性的形状取决于电压扫描的方向。还有证据表明这种缺陷迁移在劣化中发挥作用。通过在钙钛矿太阳能电池中采用耦合离子电子传导的电荷传输模型,我们表明可以直接从短路扫描速率变化的温度变化的测量获得负责滞后负责的离子物质的E_A电流和滞后因子H.通过比较来自测量的JV曲线的E_A,对于具有密度泛函理论计算的四种太阳能电池结构的E_A进行验证。在这些结构中的两种中,钙钛矿是Mapbi_3,其中MA是甲基铵,CH3NH3;空穴传输层(HTL)是螺螺(螺麦粥,2,2',7,7'-四[N,N-DI(4-甲氧基苯基)氨基] -9,9'-螺氟芴)和电子传输层(ETL)是TiO_2或SnO_2。对于第三和第四结构,钙钛矿层是FAPBI_3,其中Fa是甲脒,HC(NH_2)_2,或MAPBBR_3,并且在这两种情况下,HTL是螺旋,ETL是SNO_2。对于所有四个结构,孔和电子提取电极分别是Au和氟掺杂氧化锡。我们还使用我们的模型来预测电力转换效率的扫描速率依赖性如何随E_A,N_0和确定自由电荷重组的参数而变化。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第18期|184501.1-184501.11|共11页
  • 作者单位

    Department of Physics University of Bath Bath BA2 7AY United Kingdom;

    Mathematical Sciences University of Southampton Southampton SO17 1B3 United Kingdom;

    CSIRO Energy Newcastle Energy Centre 10 Murray Dwyer Circuit Mayfield West NSW 2304 Australia Faculty of Applied Sciences Delft University of Technology 2628 CJ Delft The Netherlands;

    CSIRO Energy Newcastle Energy Centre 10 Murray Dwyer Circuit Mayfield West NSW 2304 Australia;

    Department of Chemistry University of Bath Bath BA2 7AY United Kingdom Department of Physics University of Bath Bath BA2 7AY United Kingdom. Present address: Theoretical Division Los Alamos National Laboratory Los Alamos NM 87545 USA;

    CSIRO Energy Newcastle Energy Centre 10 Murray Dwyer Circuit Mayfield West NSW 2304 Australia;

    CSIRO Energy Newcastle Energy Centre 10 Murray Dwyer Circuit Mayfield West NSW 2304 Australia School of Materials Science and Engineering Huazhong University of Science & Technology Wuhan 430074 China;

    CSIRO Energy Newcastle Energy Centre 10 Murray Dwyer Circuit Mayfield West NSW 2304 Australia Faculty of Applied Sciences Delft University of Technology 2628 CJ Delft The Netherlands;

    CSIRO Energy Newcastle Energy Centre 10 Murray Dwyer Circuit Mayfield West NSW 2304 Australia;

    CSIRO Energy Newcastle Energy Centre 10 Murray Dwyer Circuit Mayfield West NSW 2304 Australia Centre for Organic Electronics University of Newcastle NSW 2308 Australia;

    Department of Chemistry University of Bath Bath BA2 7AY United Kingdom;

    Department of Mathematics University of Portsmouth Portsmouth POT 3HF United Kingdom;

    Mathematical Sciences University of Southampton Southampton SO17 1B3 United Kingdom;

    Department of Physics University of Bath Bath BA2 7AY United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号