...
首页> 外文期刊>Journal of Applied Physics >Metamaterial beam for flexural wave resonance rainbow trapping and piezoelectric energy harvesting
【24h】

Metamaterial beam for flexural wave resonance rainbow trapping and piezoelectric energy harvesting

机译:用于弯曲波共振的超材料梁彩虹捕获和压电能量收割

获取原文
获取原文并翻译 | 示例
           

摘要

The rainbow trapping effect demonstrates great potential in multiple-band energy harvesting. However, the existing finite-size devices with the rainbow trapping phenomenon hardly harvest energy efficiently due to the mismatch between rainbow trapping frequencies and resonance frequencies of the devices. In this study, for the first time, we report a periodically perforated metamaterial beam, which achieves both the flexural wave rainbow trapping and resonance simultaneously for the multiple-band and multiple-position energy harvesting. The band structure of the unit cell in the metamaterial beam is analyzed to illustrate its ability to realize strong dispersion and energy concentration. The study first indicates that the rainbow trapping effect activated by resonance frequencies causes much more intense spatial separation and localization of flexural waves compared with that by cutoff frequencies for the periodically perforated bare beam. We, then, demonstrate that the resonance rainbow trapping phenomenon allows the proposed design to show superiority in piezoelectric energy harvesting compared with the counterpart with off-resonance rainbow trapping. Simulations indicate that the optimal resistance and the highest output power vary much for different pairs of piezoelectric patches at the corresponding resonance rainbow frequencies; by contrast, the positions of piezoelectric patches have little influence on the performance of the device. The design concept of on-resonance rainbow trapping in metamaterials in this study will help engineers to open a new venue for high-performance piezoelectric energy harvesters.
机译:彩虹捕获效果在多频段能量收集方面表现出巨大的潜力。然而,由于彩虹捕获频率与器件的谐振频率之间的不匹配,现有的有限尺寸装置几乎没有有效地收获能量。在这项研究中,我们首次报告了一种周期性穿孔的超材料梁,其为多个带和多位置能量收集而同时实现弯曲波彩虹捕获和共振。分析了超材料光束中的单元电池的带结构,以说明其实现强色散和能量浓度的能力。该研究首先表明,通过谐振频率激活的彩虹捕获效果导致弯曲波的抗峰间隔和定位,与周期性穿孔的裸光束的截止频率相比。然后,我们证明了共振彩虹捕获现象允许提出的设计在与具有偏离彩虹捕获的对应物相比,拟议的设计表现出压电能量收集的优越性。模拟表明,相应的谐振彩虹频率下不同对压电贴片的最佳电阻和最高输出功率变化很大;相比之下,压电贴片的位置对装置的性能影响不大。在本研究中的超级材料中的谐振彩虹诱捕的设计理念将帮助工程师开设高性能压电能量收割机的新场所。

著录项

  • 来源
    《Journal of Applied Physics》 |2021年第6期|064505.1-064505.13|共13页
  • 作者单位

    Department of Mechanical Engineering City University of Hong Kong Hong Kong China;

    Department of Mechanical Engineering City University of Hong Kong Hong Kong China;

    Department of Mechanical Engineering City University of Hong Kong Hong Kong China;

    Department of Mechanical Engineering City University of Hong Kong Hong Kong China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号