...
首页> 外文期刊>Journal of Applied Physics >Microstructure and conductance-slope of InAs/GaSb tunnel diodes
【24h】

Microstructure and conductance-slope of InAs/GaSb tunnel diodes

机译:InAs / GaSb隧道二极管的微结构和电导率斜率

获取原文
获取原文并翻译 | 示例
           

摘要

InAs/GaSb and similar materials systems have generated great interest as a heterojunction for tunnel field effect transistors (TFETs) due to favorable band alignment. However, little is currently understood about how such TFETs are affected by materials defects and nonidealities. We present measurements of the conductance slope for various InAs/GaSb heterojunctions via two-terminal electrical measurements, which removes three-terminal parasitics and enables direct study on the effect of microstructure on tunnelling. Using this, we can predict how subthreshold swings in TFETs can depend on microstructure. We also demonstrate growth and electrical characterization for structures grown by metalorganic chemical vapor deposition (MOCVD)—a generally more scalable process compared with molecular beam epitaxy (MBE). We determine that misfit dislocations and point defects near the interface can lead to energy states in the band-gap and local band bending that result in trap-assisted leakage routes and nonuniform band alignment across the junction area that lower the steepness of the conductance slope. Despite the small lattice mismatch, misfit dislocations still form in InAs on GaSb due to relaxation as a result of large strain from intermixed compositions. This can be circumvented by growing GaSb on InAs, straining the GaSb underlayer, or lowering the InAs growth temperature in the region of the interface. The conductance slope can also be improved by annealing the samples at higher temperatures, which we believe acts to annihilate point defects and average out major fluctuations in band alignment across the interface. Using a combination of these techniques, we can greatly improve the steepness of the conductance slope which could result in steeper subthreshold swings in TFETs in the future.
机译:由于有利的能带对准,InAs / GaSb和类似材料的系统作为隧道场效应晶体管(TFET)的异质结引起了人们的极大兴趣。但是,目前对于这种TFET如何受到材料缺陷和非理想性影响的了解很少。我们通过两端电测量介绍了各种InAs / GaSb异质结的电导率斜率,从而消除了三端寄生现象,并能够直接研究微结构对隧穿的影响。利用这一点,我们可以预测TFET的亚阈值摆幅如何取决于微观结构。我们还演示了通过金属有机化学气相沉积(MOCVD)生长的结构的生长和电学表征-与分子束外延(MBE)相比,该过程通常更具可扩展性。我们确定界面附近的失配位错和点缺陷会导致带隙和局部带弯曲中的能量状态,从而导致陷阱辅助的泄漏路径和跨结区域的不均匀带对准,从而降低电导率斜率的陡度。尽管晶格失配很小,但由于混合组分的大应变导致弛豫,在GaSb上的InAs中仍然形成失配位错。可以通过在InAs上生长GaSb,拉紧GaSb底层或降低界面区域内InAs的生长温度来避免这种情况。电导率斜率也可以通过在较高温度下对样品进行退火来改善,我们认为这可以消除点缺陷并平均掉整个界面的能带对准的主要波动。结合使用这些技术,我们可以极大地改善电导率斜率的陡度,这可能导致将来TFET中的亚阈值摆幅更加陡峭。

著录项

  • 来源
    《Journal of Applied Physics》 |2014年第23期|1-10|共10页
  • 作者单位

    Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA|c|;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号