首页> 外文期刊>Journal of Computational Neuroscience >After-hyperpolarization currents and acetylcholine control sigmoid transfer functions in a spiking cortical model
【24h】

After-hyperpolarization currents and acetylcholine control sigmoid transfer functions in a spiking cortical model

机译:尖峰皮质模型中的超极化后电流和乙酰胆碱控制乙状结肠传递函数

获取原文
获取原文并翻译 | 示例
       

摘要

Recurrent networks are ubiquitous in the brain, where they enable a diverse set of transformations during perception, cognition, emotion, and action. It has been known since the 1970's how, in rate-based recurrent on center off-surround networks, the choice of feedback signal function can control the transformation of input patterns into activity patterns that are stored in short term memory. A sigmoid signal function may, in particular, control a quenching threshold below which inputs are suppressed as noise and above which they may be contrast enhanced before the resulting activity pattern is stored. The threshold and slope of the sigmoid signal function determine the degree of noise suppression and of contrast enhancement. This article analyses how sigmoid signal functions and their shape may be determined in biophysically realistic spiking neurons. Combinations of fast, medium, and slow after-hyperpolarization (AHP) currents, and their modulation by acetylcholine (ACh), can control sigmoid signal threshold and slope. Instead of a simple gain in excitability that was previously attributed to ACh, cholinergic modulation may cause translation of the sigmoid threshold. This property clarifies how activation of ACh by basal forebrain circuits, notably the nucleus basalis of Meynert, may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract information, as predicted by Adaptive Resonance Theory.
机译:循环网络在大脑中无处不在,在感知,认知,情感和动作过程中,它们可以实现多种转换。自1970年代以来,就已经知道如何在中心非环绕网络上基于速率的循环中选择反馈信号功能来控制输入模式到活动模式的转换,这些活动模式存储在短期存储器中。 S形信号功能尤其可以控制猝灭阈值,在该阈值以下,输入被抑制为噪声,并且在存储所得到的活动模式之前,可以对其进行对比度增强。 S形信号函数的阈值和斜率决定了噪声抑制和对比度增强的程度。本文分析了如何在生物物理逼真的尖刺神经元中确定S型信号的功能及其形状。高速,中速和慢速超极化(AHP)电流的组合,以及通过乙酰胆碱(ACh)进行的调制,可以控制S型信号阈值和斜率。胆碱能调节可能会导致乙状结肠阈值的转换,而不是先前归因于ACh的简单兴奋性增加。此属性阐明了基底前脑回路(尤其是Meynert的基础核)对ACh的激活如何改变类别学习回路的警惕性,从而改变了它们对预测失配的敏感性,从而控制了学习类别是否编码具体信息或抽象信息,如自适应共振理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号