首页> 外文期刊>Journal of Computational Neuroscience >The effect of dendritic voltage-gated conductances on the neuronal impedance: a quantitative model
【24h】

The effect of dendritic voltage-gated conductances on the neuronal impedance: a quantitative model

机译:树突状电压门控电导对神经元阻抗的影响:定量模型

获取原文
获取原文并翻译 | 示例
           

摘要

Neuronal impedance characterizes the magnitude and timing of the subthreshold response of a neuron to oscillatory input at a given frequency. It is known to be influenced by both the morphology of the neuron and the presence of voltage-gated conductances in the cell membrane. Most existing theoretical accounts of neuronal impedance considered the effects of voltage-gated conductances but neglected the spatial extent of the cell, while others examined spatially extended dendrites with a passive or spatially uniform quasi-active membrane. We derived an explicit mathematical expression for the somatic input impedance of a model neuron consisting of a somatic compartment coupled to an infinite dendritic cable which contained voltage-gated conductances, in the more general case of non-uniform dendritic membrane potential. The validity and generality of this model was verified through computer simulations of various model neurons. The analytical model was then ap- plied to the analysis of experimental data from real CA1 pyramidal neurons. The model confirmed that the biophysical properties and predominantly dendritic localization of the hyperpolarization-activated cation current I_h were important determinants of the impedance profile, but also predicted a significant contribution from a depolarization-activated fast inward current. Our calculations also implicated the interaction of I_h with amplifying currents as the main factor governing the shape of the impedance-frequency profile in two types of hippocampal interneuron. Our results provide not only a theoretical advance in our understanding of the frequency-dependent behavior of nerve cells, but also a practical tool for the identification of candidate mechanisms that determine neuronal response properties.
机译:神经元阻抗表征神经元在给定频率下对振荡输入的亚阈值响应的大小和时序。已知受神经元形态和细胞膜中电压门控电导的影响。现有的大多数关于神经元阻抗的理论解释都考虑了电压门控电导的影响,但忽略了细胞的空间范围,而其他人则用被动或空间均匀的准活性膜检查了空间延伸的树突。我们为模型神经元的体细胞输入阻抗导出了一个明确的数学表达式,该模型神经元由体细胞区室耦合到包含电压门控电导的无限树突状电缆组成,在更普遍的情况下是不均匀的树突状膜电位。通过各种模型神经元的计算机仿真,验证了该模型的有效性和普遍性。然后将分析模型应用于对来自真实CA1锥体神经元的实验数据进行分析。该模型证实,超极化激活的阳离子电流I_h的生物物理特性和主要的树枝状定位是阻抗分布的重要决定因素,但也预测了去极化激活的快速内向电流的重要贡献。我们的计算还暗示了I_h与放大电流的相互作用,这是控制两种类型海马中间神经元阻抗频率分布形状的主要因素。我们的结果不仅为我们对神经细胞频率依赖性行为的理解提供了理论上的进展,而且为确定确定神经元反应特性的候选机制提供了实用的工具。

著录项

  • 来源
    《Journal of Computational Neuroscience》 |2012年第2期|p.257-284|共28页
  • 作者单位

    Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary,Infobionic and Neurobiological Plasticity Research Group, Hungarian Academy of Sciences - P6ter Pazmany Catholic University - Semmelweis University, Budapest, Hungary;

    Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary,Department of Physiology, University of Bern, Bern, Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    impedance; cable theory; quasi-active membrane; hippocampus;

    机译:阻抗;电缆理论准活性膜海马;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号