...
首页> 外文期刊>Journal of Crystal Growth >Hydrothermal synthesis of organic hybrid BaTiO_3 nanoparticles using a supercritical continuous flow reaction system
【24h】

Hydrothermal synthesis of organic hybrid BaTiO_3 nanoparticles using a supercritical continuous flow reaction system

机译:超临界连续流反应体系水热合成有机杂化BaTiO_3纳米粒子

获取原文
获取原文并翻译 | 示例
           

摘要

Barium titanate (BaTiO_3: BT) nanoparticles were synthesized by the hydrothermal method in the presence of dispersants using a continuous supercritical flow reaction system. The reactants of TiO_2 sol/Ba(NO_3)_2 mixed solution and KOH solution were used as starting materials and that was heated quickly up to 400 ℃ under the pressure of 30 MPa for 8 ms as reaction time. The dispersant solution such as polyacrylic acid (PAA) and polyoxyethylene(20) sorbitan monooleate (Tween 80) was injected in the cooling process after the reaction. The crystal phase of the obtained particles was identified as perovskite cubic BaTiO_3 by X-ray diffractometry (XRD) and Raman spectroscopy. Raman spectra and thermogravimetric data revealed that PAA and Tween 80 fabricated hybrid BT nanoparicles. Primarily particle size of the BaTiO_3 nanoparticle was determined by means of BET surface area, as small as less than 10 nm irrespective of dispersants. In contrast, dispersed particle size in solution measured by dynamic light scattering (DLS) technique decreased from 282 nm to less than 100 nm depending on the dispersant. Aggregation of BaTiO_3 nanoparticles might be depressed in the presence of dispersants, especially PAA is the most effective among the dispersants examined.
机译:使用连续超临界流动反应系统,在分散剂存在下,通过水热法合成了钛酸钡(BaTiO_3:BT)纳米粒子。以TiO_2 sol / Ba(NO_3)_2混合溶液和KOH溶液为反应原料,在30 MPa的压力下将其快速加热至400℃,反应时间为8 ms。反应后,在冷却过程中注入聚丙烯酸(PAA)和聚氧乙烯(20)脱水山梨醇单油酸酯(吐温80)等分散剂溶液。通过X射线衍射法(XRD)和拉曼光谱法将获得的颗粒的晶相鉴定为钙钛矿立方BaTiO_3。拉曼光谱和热重数据表明,PAA和Tween 80制备了杂化BT纳米颗粒。主要通过BET表面积来确定BaTiO_3纳米颗粒的粒径,其与分散剂无关地小于10nm。相反,取决于分散剂,通过动态光散射(DLS)技术测量的溶液中分散的粒径从282 nm减小到小于100 nm。在存在分散剂的情况下,可能会抑制BaTiO_3纳米粒子的聚集,尤其是在所研究的分散剂中,PAA是最有效的。

著录项

  • 来源
    《Journal of Crystal Growth》 |2010年第24期|p.3613-3618|共6页
  • 作者单位

    Collaborative Interdisciplinary Research Team, National Institute of AdV.Anced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Japan;

    Collaborative Interdisciplinary Research Team, National Institute of AdV.Anced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Japan;

    Collaborative Interdisciplinary Research Team, National Institute of AdV.Anced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Japan;

    Collaborative Interdisciplinary Research Team, National Institute of AdV.Anced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Japan;

    Collaborative Interdisciplinary Research Team, National Institute of AdV.Anced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Japan;

    Mitsubishi Chemical Croup Science and Technology Research Center, Inc., 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-8502, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    A2. Hydrothermal crystal growth; B1. Nanomaterials; B2. Photorefractive materials;

    机译:A2。水热晶体生长;B1。纳米材料B2。光折变材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号