...
首页> 外文期刊>Journal of Crystal Growth >Dislocation Reduction In Cdte/si By Molecular Beam Epitaxy Through In-situ Annealing
【24h】

Dislocation Reduction In Cdte/si By Molecular Beam Epitaxy Through In-situ Annealing

机译:原位退火通过分子束外延减少Cdte / si的位错

获取原文
获取原文并翻译 | 示例
           

摘要

The relatively high dislocation density of HgCdTe material grown on CdTe/Si by MBE has become a major roadblock toward achieving high operability of LWIR HgCdTe/Si FPAs. One approach to mitigate this problem is to reduce the dislocation density of the underlying CdTe/Si composite substrate, which is currently about two orders higher than that of bulk CdZnTe. In this paper, we will report on our systematic study of in-situ cyclic annealing of CdTe/Si and its impact on dislocation density. We observed a two orders of magnitude reduction of dislocation density on in-situ annealed CdTe/Si with respect to un-annealed CdTe/Si. The degree of reduction is proportional to the number of annealing cycles applied during the growth run. Depth profiling of the dislocation density of CdTe/Si layers with and without in-situ cyclic annealing has also been investigated. We do not observe the conventional 1/h behavior of the dislocation density for layers grown without any thermal treatment. In contrast, for the layer grown with in-situ cyclic annealing, we observe an exponential decay of dislocation density as a function of layer thickness. However, we also observe a saturation of dislocation density in low to mid 10~5 cm~(-2), regardless of the annealing temperature and number of the cycles used during annealing.
机译:MBE在CdTe / Si上生长的HgCdTe材料的相对较高的位错密度已成为实现LWIR HgCdTe / Si FPA的高可操作性的主要障碍。缓解此问题的一种方法是降低下层CdTe / Si复合衬底的位错密度,目前该位错密度比块状CdZnTe的位错密度高约2个数量级。在本文中,我们将报告我们对CdTe / Si原位循环退火及其对位错密度的影响的系统研究。我们观察到与未退火的CdTe / Si相比,原位退火的CdTe / Si的位错密度降低了两个数量级。减少程度与生长过程中施加的退火周期数成正比。还研究了在有和没有原位循环退火的情况下CdTe / Si层的位错密度的深度分布图。对于未进行任何热处理的生长层,我们没有观察到位错密度的常规1 / h行为。相反,对于通过原位循环退火生长的层,我们观察到位错密度随层厚度的变化呈指数衰减。然而,我们也观察到位错密度在低至10〜5 cm〜(-2)中饱和,而与退火温度和退火过程中使用的循环次数无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号