...
首页> 外文期刊>The journal of earth and planetary sciences, Nagoya University >REE abundance patterns for lanthanite-(Nd) and kimuraite-(Y)regressed successfully by Jorgensen-Kawabe equation for the lanthanide tetrad effectg
【24h】

REE abundance patterns for lanthanite-(Nd) and kimuraite-(Y)regressed successfully by Jorgensen-Kawabe equation for the lanthanide tetrad effectg

机译:利用Jorgensen-Kawabe方程成功地回归了镧系元素四重效应的稀土元素-(Nd)和kimuraite-(Y)REE富集模式

获取原文
获取原文并翻译 | 示例
           

摘要

The REE abundance patterns for lanthanite-(Nd) [(La, Nd)_2(CO_3)_3·8H_2O] and kimuraite-(Y) [CaY_2(CO_3)_4-6(H_2O)], have been examined by Jorgensen-Kawabe equation for the lanthanide tetrad effect. The reported REE data for lanthanite-(Nd) samples from the Whitianga quarry, New Zealand (Graham et al., 2007) and Hizen, Higashi Mastuura, Japan (Akagi et al., 1996), give their chondrite-normalized REE patterns which can be regressed successfully by the theoretical equation, except for their Ce anomalies. When the lanthanite-(Nd) from Whitianga is normalized by the Hizen lanthanite, their strong trends of light REE enrichment are cancelled mutually, leaving a small convex tetrad effect in the REE pattern. Two kimuraite-(Y) samples coexisting with the Hizen lanthanite-(Nd) show similar W-type tetrad effects (Akagi et al. 1993). One kimuraite-(Y) sample, in fact, exhibits a typical tetrad effect, but the other kimuraite-(Y) shows a less symmetrical one. The REE pattern for the former kimuraite, when normalized by chondrite or by the Hizen lanthanite, is immediately regressed by the theoretical equation, but the REE pattern for the latter kimuraite cannot be fitted to the equation without correcting for light REEs. The excesses of light REEs in the latter kimuraite are evaluated by the regular REE fractionation between kimuraite and lanthanite and the theoretical equation. The REE patterns for lanthanite-(Nd) and kimuraite-(Y) with the tetrad effects are certainly described quantitatively by J0rgensen-Kawabe equation, signifying its importance in considering the REE distributions in the representative rare earth minerals of lanthanite-(Nd) and kimuraite-(Y).
机译:Jorgensen-Kawabe已研究了镧系元素-(Nd)[(La,Nd)_2(CO_3)_3·8H_2O]和奇长石-(Y)[CaY_2(CO_3)_4-6(H_2O)]的REE丰度模式。镧系元素四元效应方程。从新西兰Whitianga采石场(Graham等人,2007)和日本东Mastuura的Hizen(Akagi等人,1996)的镧系元素(Nd)样品报告的REE数据给出了其球粒化归一化REE模式,可以通过理论方程成功回归,除了它们的Ce异常。当Hizen镧系元素将Whitianga的镧系元素(Nd)归一化时,它们轻质REE富集的强烈趋势相互抵消,从而在REE模式中留下小的凸四边形效应。与Hizen镧铁矿(Nd)共存的两个kimuraite(Y)样品显示出类似的W型四重效应(Akagi et al。1993)。实际上,一个kimuraite-(Y)样品具有典型的四合效应,而另一个kimuraite-(Y)样品的对称性较差。当用球粒陨石或Hizen镧铁矿归一化时,前者的REE模式立即通过理论方程回归,但是如果不修正轻质REE,则后者的REE模式就无法拟合该方程。后一种针铁矿中轻质稀土元素的过量量通过针铁矿和镧系元素之间的常规稀土元素分馏和理论方程进行评估。带有四重效应的镧系元素-(Nd)和kimuraite-(Y)的REE模式肯定由Jrrgensen-Kawabe方程定量地描述,表明其在考虑代表性的镧系元素矿物(Nd)和(Nd)和稀土元素中REE分布的重要性。 kimuraite-(Y)。

著录项

  • 来源
  • 作者单位

    Department of Earth and Planetary Sciences,Graduate School of Environmental Studies, Nagoya University,Chikusa, Furo-cho, 464-8062 Nagoya, Japan;

    Department of Earth and Planetary Sciences,Graduate School of Environmental Studies, Nagoya University,Chikusa, Furo-cho, 464-8062 Nagoya, Japan;

    Center for Chronological Research, Nagoya University, Chikusa, Furo-cho, 464-8062 Nagoya, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号