首页> 外文期刊>Journal of Energy Resources Technology >Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-Line and Staggered Nozzle Arrays
【24h】

Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-Line and Staggered Nozzle Arrays

机译:改进燃气涡轮机叶片内部冷却的喷气冲击冷却试验和数值研究,用交错喷嘴阵列

获取原文
获取原文并翻译 | 示例
           

摘要

Internal cooling of gas turbine blades is performed with the combination of impingement cooling and serpentine channels. Besides gas turbine blades, the other turbine components such as turbine guide vanes, rotor disks, and combustor wall can be cooled using jet impingement cooling. This study is focused on jet impingement cooling, in order to optimize the coolant flow, and provide the maximum amount of cooling using the minimum amount of coolant. The study compares between different nozzle configurations (in-line and staggered), two different Reynold's numbers (1500 and 2000), and different stand-off distances (Z/D) both experimentally and numerically. The Z/D considered are 3, 5, and 8. In jet impingement cooling, the jet of fluid strikes perpendicular to the target surface to be cooled with high velocity to dissipate the heat. The target surface is heated up by a direct current (DC) power source. The experimental results are obtained by means of thermal image processing of the captured infra-red (IR) thermal images of the target surface. Computational fluid dynamics (CFD) analysis were employed to predict the complex heat transfer and flow phenomena, primarily the line-averaged and area-averaged Nusselt number and the cross-flow effects. In the current investigation, the flow is confined along with the nozzle plate and two parallel surfaces forming a bi-directional channel (bi-directional exit). The results show a comparison between heat transfer enhancement with in-line and staggered nozzle arrays. It is observed that the peaks of the line-averaged Nusselt number (Nu) become less as the stand-off distance (Z/D) increases. It is also observed that the fluctuations in the stagnation heat transfer are caused by the impingement of the primary vortices originating from the jet nozzle exit.
机译:通过冲击冷却和蛇形通道的组合进行燃气涡轮叶片的内部冷却。除了燃气轮机叶片之外,可以使用喷射冲击冷却冷却诸如涡轮机导向叶片,转子盘和燃烧室壁的其他涡轮机部件。本研究专注于喷射冲击冷却,以便优化冷却剂流动,并使用最小的冷却剂提供最大的冷却量。该研究比较不同的喷嘴配置(在线和交错),两个不同的雷诺数(1500和2000),以及实验和数值的不同的脱扣距离(Z / D)。考虑的Z / D为3,5和8.在喷射冲击冷却中,垂直于目标表面的流体撞击射流以高速冷却以耗散热量。目标表面被直流(DC)电源加热。通过捕获的红外线(IR)的目标表面的热图像处理来获得实验结果。使用计算流体动力学(CFD)分析来预测复杂的传热和流动现象,主要是线平均和面积平均的营养数和交叉流量效应。在本电流研究中,流动与喷嘴板和形成双向通道(双向出口)的两个平行表面限制。结果表明,传热增强与在线和交错喷嘴阵列之间的比较。观察到,随着脱扣距离(Z / D)增加,线平均篮板数(NU)的峰变少。还观察到,停滞传热中的波动是由源自喷射喷嘴出口的主涡流的冲击引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号