...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Numerical Modeling of the Effects of Leading-Edge Erosion and Trailing-Edge Damage on Wind Turbine Loads and Performance
【24h】

Numerical Modeling of the Effects of Leading-Edge Erosion and Trailing-Edge Damage on Wind Turbine Loads and Performance

机译:通向侵蚀和后缘损伤对风力涡轮机负荷的数值模型及性能

获取原文
获取原文并翻译 | 示例
           

摘要

Wind turbines operate in challenging environmental conditions. In hot and dusty climates, blades are constantly exposed to abrasive particles that, according to many field reports, cause significant damages to the leading edge. On the other hand, in cold climates similar effects can be caused by prolonged exposure to hail and rain. Quantifying the effects of airfoil deterioration on modern multi-MW wind turbines is crucial to correctly schedule maintenance and to forecast the potential impact on productivity. Analyzing the impact of damage on fatigue and extreme loading is also important to improve the reliability and longevity of wind turbines. In this work, a blade erosion model is developed and calibrated using computational fluid dynamics (CFD). The Danmarks Tekniske Universitet (DTU) 10 MW Reference Wind Turbine is selected as the case study, as it is representative of the future generation wind turbines. Lift and Drag polars are generated using the developed model and a CFD numerical setup. Power and torque coefficients are compared in idealized conditions at two wind speeds, i.e., the rated speed and one below it. Full aero-servo-elastic simulations of the turbine are conducted with the eroded polars using NREL's BEM-based code OpenFAST. Sixty-six 10-min simulations are performed for each stage of airfoil damage, reproducing operating conditions specified by the IEC 61400-1 power production DLC-group, including wind shear, yaw misalignment, and turbulence. Aeroelastic simulations are analyzed, showing maximum decreases in CP of about 12% as well as reductions in fatigue and extreme loading.
机译:风力涡轮机在挑战环境条件下运行。在散热器和尘土飞扬的气候中,刀片不断暴露于磨料粒子,根据许多现场报告,对前沿造成重大损害。另一方面,在寒冷的气候中,由于长时间暴露在冰雹和雨中可能会引起类似的效果。量化翼型劣化对现代多MW风力涡轮机的影响至关重要,可以正确安排维护,并预测对生产力的潜在影响。分析损害对疲劳和极端负荷的影响也很重要,可以提高风力涡轮机的可靠性和寿命。在这项工作中,使用计算流体动力学(CFD)开发和校准刀片腐蚀模型。 Danmarks Tekniske Universitet(DTU)10 MW参考风力涡轮机被选择为案例研究,因为它代表了未来一代风力涡轮机。使用开发的模型和CFD数值设置生成升力和拖动点。在两个风速下的理想条件下比较功率和扭矩系数,即额定速度和下面的一个。涡轮机的全部航空伺服弹性模拟使用NREL的基于BEM的代码进行侵蚀的波尔开放。为翼型损坏的每个阶段进行六十六个10分钟的模拟,再现IEC 61400-1电力生产DLC组规定的操作条件,包括风剪,横摆物和湍流。分析了空气弹性模拟,显示了CP的最大降低约12%以及减少疲劳和极端载荷。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power》 |2020年第11期|111005.1-111005.12|共12页
  • 作者单位

    Department of Industrial Engineering University of Florence Via di Santa Marta 3 Firenze 50139 Italy;

    Department of Industrial Engineering University of Florence Via di Santa Marta 3 Firenze 50139 Italy;

    Hermann-Foettinger-Institut Technische Universitaet Berlin Mueller-Breslau-Street 8 Berlin 10623 Germany;

    Department of Industrial Engineering University of Florence Via di Santa Marta 3 Firenze 50139 Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号