...
首页> 外文期刊>Journal of engineering materials and technology >Nanoclay and Microballoons Wall Thickness Effect on Dynamic Properties of Syntactic Foam
【24h】

Nanoclay and Microballoons Wall Thickness Effect on Dynamic Properties of Syntactic Foam

机译:纳米粘土和微球壁厚对复合泡沫动态性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The effect of nanoclay on the high strain rate mechanical properties of syntactic foams is studied. Two types of microballoons with different wall thicknesses are used in fabrication of plain and nanoclay syntactic foams. Plain syntactic foams are fabricated with 60% volume fraction of glass microballoons. 1%, 2%, and 5% volume fractions of Nanomer I.30E nanoclay are incorporated to produce nanoclay syntactic foams. High strain rate test using split Hopkinson pressure bar (SHPB) apparatus is performed on all types of plain and nanoclay syntactic foams. Dynamic modulus, strength, and corresponding strain are calculated using the SHPB data. Quasistatic test is also performed and results are compared with the dynamic SHPB results. The results demonstrate the importance of nanoclay and microballoon wall thickness in determination of syntactic foam dynamic properties. It is found that at a high strain rate, the strength and modulus of composite foams having K46 microballoons increase due to addition of 1% volume fraction of nanoclay. However, in composite foams having S22 microballoons, the increase in strength is not significant at a high strain rate. Further increase in nanoclay volume fraction to 2% and 5% reduces the strength and modulus of composite foams having S22 microballoons. Difference in wall thickness of microballoons is found to affect the strength, modulus, strain energy, and deformation of composite foams. Composite foams fabricated with thicker walled microballoons (K46) show comparatively higher values of strength, modulus, and strain energy compared with thin walled (S22) microballoons. Scanning electron microscopy shows that crack propagation behavior is distinct at different strain rates.
机译:研究了纳米粘土对复合泡沫高应变速率力学性能的影响。两种类型的壁厚不同的微型气球用于制造普通泡沫和纳米粘土复合泡沫。用60%体积的玻璃微气球制造普通的复合泡沫塑料。掺入1%,2%和5%体积分数的Nanomer I.30E纳米粘土,以生产纳米粘土复合泡沫。使用分离式Hopkinson压力棒(SHPB)仪器对所有类型的普通和纳米粘土复合泡沫进行了高应变率测试。使用SHPB数据计算动态模量,强度和相应的应变。还执行准静态测试,并将结果与​​动态SHPB结果进行比较。结果表明纳米粘土和微气球壁厚在确定句法泡沫动力学特性中的重要性。发现在高应变速率下,由于添加了1%体积分数的纳米粘土,具有K46微气球的复合泡沫的强度和模量增加。然而,在具有S22微气球的复合泡沫中,在高应变速率下强度的增加并不显着。纳米粘土体积分数进一步增加至2%和5%降低了具有S22微气球的复合泡沫的强度和模量。发现微气球壁厚的差异会影响复合泡沫的强度,模量,应变能和变形。与较薄壁的微气球(S22)相比,用较厚的壁微气球(K46)制造的复合泡沫材料显示出更高的强度,模量和应变能值。扫描电子显微镜显示,在不同的应变速率下,裂纹扩展行为是不同的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号