...
首页> 外文期刊>Journal of engineering materials and technology >Polycrystal Plasticity Based Predictions of Strain Localization in Metal Forming
【24h】

Polycrystal Plasticity Based Predictions of Strain Localization in Metal Forming

机译:基于多晶体塑性的金属成形应变局部化预测

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, a multiscale material model is employed to simulate two metal forming processes: 2D plane strain compression and a 3D biaxial bulge test. A generalized Taylor-type polycrystal model is employed to describe the fine scale viscoplastic response of the material, while the coarse scale response is computed using a multiphysics finite element code. The coupling between the local responses of the textured polycrystal and the continuum level is achieved via an adaptive sampling framework, which is shown to greatly reduce the total number of fine scale evaluations required to achieve a specified error tolerance. The anisotropy represented at the fine scale is sufficient to observe strain localization in both forming processes. For the case of idealized plane strain compression, a fairly diffuse yet distinct patterning of plastic strain localization develops in a manner consistent with experimental observations. The application of friction constraints to the compression surfaces-as is present in channel die compression tests-dramatically strengthens and redistributes the localization patterns. The simulated biaxial bulge test also demonstrates strain localization that is in agreement with the locations of diffuse necks in experimental observations. The tests are conducted using a federated multiple-program multiple-data simulation, which allows for load balancing between the coarse and fine scale calculations. Such a simulation framework is capable of efficiently embedding physically robust, but computationally expensive material models in component scale simulations appropriate to design decisions.
机译:在这项研究中,采用多尺度材料模型来模拟两个金属成形过程:2D平面应变压缩和3D双轴凸起测试。采用广义泰勒型多晶模型描述材料的细尺度粘塑性响应,而粗尺度响应则使用多物理场有限元代码计算。通过自适应采样框架可实现纹理化多晶的局部响应与连续谱水平之间的耦合,这表明可以大大减少实现指定误差容限所需的精细评估的总数。以精细尺度表示的各向异性足以观察到两个成形过程中的应变局部化。对于理想的平面应变压缩而言,塑性应变局部化的相当分散但明显的图案以与实验观察一致的方式发展。如在通道模头压缩测试中所存在的那样,将摩擦约束施加到压缩表面上将极大地增强和重新分配定位模式。模拟的双轴凸起测试还证明了应变局部化与实验观察中扩散颈的位置一致。使用联合的多程序多数据模拟进行测试,从而可以在粗略和精细比例计算之间实现负载平衡。这样的仿真框架能够在适合设计决策的组件规模仿真中有效地嵌入物理鲁棒但计算量大的材料模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号