首页> 外文期刊>Journal of Experimental Botany >Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer
【24h】

Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer

机译:除了气孔,另一个演员值得关注:内部电导对CO 2 转移的被遗忘作用

获取原文
获取原文并翻译 | 示例
           

摘要

Internal conductance describes the movement of CO2 from substomatal cavities to sites of carboxylation. Internal conductance has now been measured in approximately 50 species, and in all of these species it is a large limitation of photosynthesis. It accounts for somewhat less than half of the decrease in CO2 concentrations from the atmosphere to sites of carboxylation. There have been two major findings in the past decade. First, the limitation due to internal conductance (i.e. Ci–Cc) is not fixed but varies among species and functional groups. Second, internal conductance is affected by some environmental variables and can change rapidly, for example, in response to leaf temperature, drought stress or CO2 concentration. Biochemical factors such as carbonic anhydrase or aquaporins are probably responsible for these rapid changes. The determinants of internal conductance remain elusive, but are probably a combination of leaf anatomy, morphology, and biochemical factors. In most plants, the gas phase component of internal conductance is negligible with the majority of resistance resting in the liquid phase from cell walls to sites of carboxylation. The internal conductance story is far from complete and many exciting challenges remain. Internal conductance ought to be included in models of canopy photosynthesis, but before this is feasible additional data on the variation in internal conductance among and within species are urgently required. Future research should also focus on teasing apart the different steps in the diffusion pathway (intercellular spaces, cell wall, plasmalemma, cytosol, and chloroplast envelope) since it is likely that this will provide clues as to what determines internal conductance.
机译:内部电导描述了CO 2 从气孔下腔向羧化位点的运动。现在已经测量了大约50种物种的内部电导,并且在所有这些物种中,这是光合作用的很大局限。从大气到羧化位点,CO 2 浓度下降的一半还不到一半。在过去的十年中,有两个主要发现。首先,由于内部电导引起的限制(即C i –C c )不是固定的,而是随物种和功能组的不同而变化。其次,内部电导受到一些环境变量的影响,并且可以快速变化,例如响应叶片温度,干旱胁迫或CO 2 浓度。诸如碳酸酐酶或水通道蛋白的生化因子可能是造成这些快速变化的原因。内部电导的决定因素仍然难以捉摸,但可能是叶片解剖结构,形态和生化因素的综合。在大多数工厂中,内部电导的气相成分可以忽略不计,其中大部分电阻都存在于从细胞壁到羧化位点的液相中。内部电导故事远未完成,仍然存在许多令人兴奋的挑战。内部电导应包括在冠层光合作用模型中,但是在此可行之前,迫切需要有关物种内部和内部物种内部电导率变化的其他数据。未来的研究还应集中于弄清扩散途径中的不同步骤(细胞间空间,细胞壁,血浆,细胞质和叶绿体包膜),因为这很可能会提供有关确定内部电导的线索。

著录项

  • 来源
    《Journal of Experimental Botany》 |2008年第7期|p.1475-1487|共13页
  • 作者

    Charles R. Warren*;

  • 作者单位

    School of Biological Sciences, Heydon-Laurence Building A08, The University of Sydney, NSW 2006, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号