首页> 外文期刊>Journal of Experimental Marine Biology and Ecology >Respiration predicted from an Enzyme Kinetic Model and the Metabolic Theory of Ecology in two species of marine bacteria
【24h】

Respiration predicted from an Enzyme Kinetic Model and the Metabolic Theory of Ecology in two species of marine bacteria

机译:通过酶动力学模型和代谢生态学理论预测的两种海洋细菌的呼吸作用

获取原文
获取原文并翻译 | 示例
           

摘要

Respiratory oxygen consumption is the result of a cell's biochemistry. It is caused by enzymatic activity of the respiratory electron transfer system (ETS). However, in spite of this understanding, respiration models con tinue to be based on allometric equations relating respiration to body size, body surface, or biomass. The Met abolic Theory of Ecology (MTE) is a current example. It is based on Kleiber's law relating respiration (R) and biomass (M) in the form, R = CM3/4e-E_a/KT, where C is a constant, E_a is the Arrhenius activation energy, k is the Boltzmann constant for an atom or molecule, and T is the temperature in Kelvin. This law holds because bio mass packages the ETS. In contrast, we bypass biomass and model respiration directly from its causal rela tionship with the ETS activity, R = f (ETS). We use a biochemical Enzyme Kinetic Model (EKM) of respiratory oxygen consumption based on the substrate control of the ETS. It postulates that the upper limit of R is set by the maximum velocity, V_(max), of complex I of the ETS and the temperature, and that the sub strate availability, S, modulates R between zero and this upper limit. Kinetics of this thermal-substrate regu lation is described by the Arrhenius and Michaelis-Menten equations. The EKM equation takes the form R=ETS[S]e~(e-E_a/R_g)/K+[S] where R_g is the molar gas constant and K is the Michaelis-Menten constant. Here, we apply the EKM and the MTE to predict a respiration time-profile throughout the exponential, steady state, and nutrient-limited phases of the marine bacteria Pseudomonas nautica and Vibrio natriegens in acetate-based cultures. Both models were tested by comparing their output with the measured Ro_2 time-profile. The MTE predicted respiration accurately only in the exponential growth phase, but not during the nutrient lim itation part of the stationary phase. In contrast, the EKM worked well throughout both physiological phases as long as the modeled substrates fall with the declining carbon source. Results support the theoretical bases of the EKM. We conclude that the EKM holds promise for predicting respiration at the different physiological states and time-scales important to microbiological studies.
机译:呼吸耗氧量是细胞生物化学的结果。它是由呼吸电子转移系统(ETS)的酶活性引起的。然而,尽管有这种理解,呼吸模型仍继续基于将呼吸与体型,体表或生物量相关的异速方程。大都会生态学理论(MTE)是当前的例子。它基于与呼吸(R)和生物量(M)有关的形式的Kleiber定律,形式为R = CM3 / 4e-E_a / KT,其中C为常数,E_a为阿累尼厄斯活化能,k为原子或分子,T是开氏温度。该法则成立是因为生物物质包装了ETS。相比之下,我们绕过生物量,直接根据其与ETS活性R = f(ETS)的因果关系来模拟呼吸。我们基于ETS的底物控制,使用呼吸氧气消耗的生化酶动力学模型(EKM)。它假定R的上限由ETS的复数I和温度的最大速度V_(max)设置,并且基板的可用性S在零和该上限之间调节R。这种热基质调节的动力学由Arrhenius和Michaelis-Menten方程描述。 EKM方程采用R = ETS [S] e〜(e-E_a / R_g)/ K + [S]的形式,其中R_g是摩尔气体常数,K是米氏常数。在这里,我们应用EKM和MTE来预测基于醋酸盐的培养物中海洋细菌假单胞菌和纳特弧菌的指数,稳定状态和养分受限阶段的呼吸时间曲线。通过将两个模型的输出与测得的Ro_2时间曲线进行比较,对两个模型进行了测试。 MTE仅在指数生长期准确预测呼吸作用,而在稳态生长期的营养限制阶段则不能预测。相比之下,只要建模的基质随碳源的减少而下降,EKM便在两个生理阶段都运作良好。结果支持EKM的理论基础。我们得出结论,EKM有望在微生物学重要的不同生理状态和时间尺度上预测呼吸。

著录项

  • 来源
  • 作者单位

    Departamento de Fisica, Facultad de Ciencias del Mar, Universidad de Las Paimas de Gran Canaria, E-35017 Las Palmas de Gran Canaria, Spain;

    Institute of Oceanography and Global Change, Biological Oceanography Group, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain,Institut de Gencies del Mar (CSIC), Passeig Maritim de la Barceloneta, 37-49, 08003 Barcelona, Spain,Bigelow Laboratory for Ocean Sciences, W. Boothbay Harbor, ME 04538, USA;

    Institut de Gencies del Mar (CSIC), Passeig Maritim de la Barceloneta, 37-49, 08003 Barcelona, Spain;

    (10 Ryan Crt, Embrun, Ontario, Canada KOA 1W0;

    Institute of Oceanography and Global Change, Biological Oceanography Group, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ETS; modeling respiration; MTE; oxygen consumption;

    机译:ETS;模拟呼吸;MTE;耗氧量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号