首页> 外文期刊>Journal of guidance, control, and dynamics >Analysis of Insect-Inspired Wingstroke Kinematic Perturbations for Longitudinal Control
【24h】

Analysis of Insect-Inspired Wingstroke Kinematic Perturbations for Longitudinal Control

机译:纵向控制昆虫激发的中风运动学扰动分析

获取原文
获取原文并翻译 | 示例
           

摘要

Insects display remarkable agility and flight-path control in the execution of their everyday tasks, all in the face of significant environmental uncertainties. Maneuvering forces are typically generated by small kinematic perturbations to high-frequency wing motions, such as changes in stroke amplitude, timing of wing rotation, or stroke plane tilting [1]. This clever approach of coupling high-frequency actuation with low-frequency rigid-body motion eliminates the need in most species for active sensing on and active deformation of the wing surface, otherwise evident in their avian [2] and mammalian [3] aerobatic counterparts. Previous analysis of insect-inspired flapping-wing locomotion has examined wing kinematic trajectories from the perspective of maximizing lift [4,5] or minimizing required power [6]. With the introduction of new tools to extract the fine wingstroke to wingstroke kinematics of insects from high-speed videography [7,8], a number of species-specific control strategies for maneuvering have been identified. In addition, with the development of microscale vehicles that can potentially generate lift forces greater than their weight [9].
机译:面对巨大的环境不确定性,昆虫在执行日常任务时表现出出色的敏捷性和飞行路径控制能力。操纵力通常是由对高频机翼运动的小的运动扰动产生的,例如冲程幅度的变化,机翼旋转的时机或冲程平面的倾斜[1]。这种将高频致动与低频刚体运动耦合的巧妙方法消除了大多数物种对机翼表面进行主动感知和主动变形的需求,在鸟类[2]和哺乳动物[3]的特技飞行对手中显而易见。昆虫激发的扑翼运动的先前分析从最大化升力[4,5]或最小化所需功率[6]的角度研究了机翼运动轨迹。随着新工具的引入,从高速电子照相术中提取细翅wings到昆虫的翅tro运动学[7,8],已经确定了许多针对特定物种的机动控制策略。另外,随着微型汽车的发展,它可能产生比其重量更大的升力[9]。

著录项

  • 来源
    《Journal of guidance, control, and dynamics》 |2011年第2期|p.618-623|共6页
  • 作者单位

    University of Maryland, College Park, Maryland 20742 Department of Aerospace Engineering, 3182 Glenn L. Martin Hall;

    University of Maryland, College Park, Maryland 20742 Department of Aerospace Engineering, 3182 Glenn L. Martin Hall;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号