首页> 外文期刊>Journal of guidance, control, and dynamics >Optimal Formation Design for Magnetospheric Multiscale Mission Using Differential Orbital Elements
【24h】

Optimal Formation Design for Magnetospheric Multiscale Mission Using Differential Orbital Elements

机译:利用微分轨道要素的磁层多尺度任务的最佳编队设计

获取原文
获取原文并翻译 | 示例
           

摘要

The Magnetospheric Multiscale Mission requires a formation of four satellites in a nearly regular tetrahedron throughout a region of interest defined near the apogee of a highly eccentric reference orbit Previous papers have addressed the design of formations in orbits of high eccentricity to maximize a quality factor in a region of interest, including the use of differential mean orbital elements as design variables. In this paper, a robust optimization method is presented to improve formation performance in the presence of formation initialization errors. Several design methods are analyzed by applying differential semimajor axis errors, which have a strong effect on the long-term stability of spacecraft formations. It is shown that large formations can satisfy mission requirements for a longer time than smaller formations, when the same magnitude of errors are considered, and generally exhibitiess variation in quality factors due to these errors. The robust optimization method is applied to these smaller formations and produces results that are much more stable when semimajor axis errors are included, at a cost of some performance in the nominal error-free case. The results are verified using the NASA General Mission Analysis Tool and are shown to be reasonably accurate, except in predicting very long-term behavior. A physical analysis of the geometry of several magnetospheric multiscale formation designs is provided, and eight distinct optimal tetrahedron orientations are identified (two configurations, in which the chief satellite can be placed at any of the four vertices).
机译:磁层多尺度任务要求在高偏心参考轨道的顶点附近定义的整个感兴趣区域内,在几乎规则的四面体中形成四颗卫星。先前的论文已经讨论了高偏心率轨道中的地层设计,以最大程度地提高质量。感兴趣的区域,包括使用微分平均轨道元素作为设计变量。本文提出了一种鲁棒的优化方法,可以在存在地层初始化错误的情况下提高地层性能。通过应用微分半长轴误差分析了几种设计方法,这些方法对航天器编队的长期稳定性有很大影响。结果表明,在考虑相同大小的误差的情况下,大型编队比小型编队可以满足更长的任务要求,并且由于这些错误,质量因数通常表现出差异。鲁棒的优化方法应用于这些较小的构造,并且在包含半长轴误差的情况下产生的结果要稳定得多,但在无名义误差的情况下会产生一些性能损失。使用NASA通用任务分析工具对结果进行了验证,并显示出合理的准确性,除了预测非常长期的行为外。提供了几个磁层多尺度构造设计的几何形状的物理分析,并确定了八个不同的最佳四面体方位(两种配置,其中主卫星可以放置在四个顶点中的任何一个)。

著录项

  • 来源
    《Journal of guidance, control, and dynamics》 |2011年第4期|p.1070-1080|共11页
  • 作者单位

    Texas A&M University, College Station, Texas 77843-3141 Department of Aerospace Engineering, Mail Stop 3141;

    Texas A&M University, College Station, Texas 77843-3141 Department of Aerospace Engineering, Mail Stop 3141;

    Texas A&M University, College Station, Texas 77843-3141 Department of Aerospace Engineering, Mail Stop 3141;

    Texas A&M University, College Station, Texas 77843-3141 Department of Aerospace Engineering, Mail Stop 3141;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号