...
首页> 外文期刊>Journal of guidance, control, and dynamics >Endgame Problem Part 2: Multibody Technique and the Tisserand-Poincare Graph
【24h】

Endgame Problem Part 2: Multibody Technique and the Tisserand-Poincare Graph

机译:残局问题第二部分:多体技术和Tisserand-Poincare图

获取原文
获取原文并翻译 | 示例
           

摘要

This two-part series studies the anatomy of the endgame problem, the last part of the spacecraft trajectory before the orbit-insertion maneuver into the science orbit. The endgame provides large savings in the capture Δv, and therefore it is an important element in the design of ESA and NASA missions to the moons of Jupiter and Saturn. The endgame problem has been approached in different ways with different results: the v_∞-leveraging-maneuver approach leads to high-Δv, short-time-of-flight transfers, and the multibody technique leads to low- Δv, long-time-of-flight transfers. This paper series investigates the link between the two approaches, giving a new insight to the complex dynamics of the multibody gravity-assist problem. In this paper we focus on the multibody approach using a new graphical tool, the Tisserand-Poincare graph. The Tisserand-Poincare graph shows that ballistic endgames are energetically possible and it explains why they require resonant orbits patched with high-altitude flybys, whereas in the v_∞-leveraging-maneuver approach, flybys alone are not effective without impulsive maneuvers in between them. We then use the Tisserand-Poincare graph to design quasi-ballistic transfers. Unlike previous methods, the Tisserand-Poincare graph provides a valuable energy-based target point for the design of the endgame and begin-game and a simple way to patch them. Finally, we present two transfers. The first transfer is between low-altitude orbits at Europa and Ganymede using almost half the Δv of the Hohmann transfer; the second transfer is a 300-day quasi-ballistic transfer between halo orbits of the Jupiter-Ganymede and Jupiter-Europa. With approximately 50 m/s the transfer can be reduced by two months.
机译:这个由两部分组成的系列文章研究了残局问题的解剖,残骸是在将轨道插入科学轨道之前进行的航天器轨迹的最后一部分。残局可以大大节省捕获量Δv,因此,它是ESA和NASA飞往木星和土星卫星的任务设计中的重要元素。残局问题以不同的方式得到了不同的结果:v_∞-杠杆操纵方法导致高Δv,短时间的飞行转移,多体技术导致低Δv,长时间的飞行。飞行中的转机。本系列文章探讨了这两种方法之间的联系,为多体重力辅助问题的复杂动力学提供了新的见解。在本文中,我们重点介绍使用新的图形工具Tisserand-Poincare图的多体方法。 Tisserand-Poincare曲线图显示出弹道终局在能量上是可能的,并解释了为什么它们需要用高空飞越打补丁的共振轨道,而在v_∞-杠杆-机动方法中,如果没有它们之间的脉冲机动,仅靠飞越是无效的。然后,我们使用Tisserand-Poincare图设计准弹道传递。与以前的方法不同,Tisserand-Poincare图提供了一个有价值的基于能量的目标点,用于残局和开始游戏的设计以及修补它们的简单方法。最后,我们提出两个转移。第一次转移是在欧罗巴和木卫三的低空轨道之间进行的,几乎使用了霍曼转移的Δv。第二次转移是木星-甘梅德和木星-欧罗巴的晕圈之间的300天准弹道转移。大约50 m / s的传输量可以减少两个月。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号