...
首页> 外文期刊>Journal of Heat Transfer >Investigation of Nanofluid Heat Transfer in a MicroChannel Under Magnetic Field Via Lattice Boltzmann Method: Effects of Surface Hydrophobicity, Viscous Dissipation, and Joule Heating
【24h】

Investigation of Nanofluid Heat Transfer in a MicroChannel Under Magnetic Field Via Lattice Boltzmann Method: Effects of Surface Hydrophobicity, Viscous Dissipation, and Joule Heating

机译:格子Boltzmann方法研究磁场下微通道中纳米流体的传热:表面疏水性,粘性耗散和焦耳热的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, effect of Joule heating (JH), viscous dissipations (VD), and super hydrophobic surfaces on heat transfer of water-Al2O3 and water-CuO nanofluids in a micro-channel has been investigated using lattice Boltzmann method (LBM). The microchannel is under a uniform and transverse magnetic field. The lower wall of the microchannel is insulated and a uniform heat flux has been applied to the upper wall. Results are generated at constant Reynolds number of 150, volume fraction of 2%, and a diameter of 25 nm with variable Hartmann numbers ranging from 0 to 20 and nondimensional slip coefficients from 0 to 0.05. The results of the developed code are in good agreement with other analytical, numerical, and experimental reports. Moreover, the results show that in such case, ignoring the JH and VD leads to a significant error in the prediction of Nusselt number up to 62% and 56%, respectively, for water-Al2O3 and water-CuO nanofluids. It has also been shown that using a super hydrophobic surface with a slip coefficient of 0.05 leads to a significant reduction in VD; however, it increases the effect of JH. On the other hand, it is found that, despite JH and viscous dissipation effects, using super hydrophobic surfaces (up to a slip coefficient of 0.05) leads to an increase in Nusselt number and decrease in shear stress for all the studied Hartmann numbers. Finally, it has been concluded that super hydrophobic surfaces can be used as a passive tool to enhance the heat transfer rate and simultaneously decrease the pumping power demand.
机译:本文使用晶格玻尔兹曼方法(LBM)研究了焦耳热(JH),粘性耗散(VD)和超疏水表面对水-Al2O3和水-CuO纳米流体在微通道中传热的影响。微通道处于均匀且横向的磁场下。微通道的下壁是绝缘的,并且均匀的热通量已施加到上壁。结果在恒定的雷诺数150,体积分数2%和直径25 nm以及变化的Hartmann数范围从0到20和无量纲滑动系数从0到0.05的条件下产生。所开发代码的结果与其他分析,数值和实验报告非常吻合。此外,结果表明,在这种情况下,对于水-Al2O3和水-CuO纳米流体,忽略JH和VD分别导致在预测努塞尔数方面的重大误差,分别高达62%和56%。还显示出,使用具有0.05的滑移系数的超疏水表面会导致VD显着降低。但是,它增加了JH的效果。另一方面,发现尽管有JH和粘性耗散效应,但对于所有研究的Hartmann数,使用超疏水表面(滑移系数最大为0.05)会导致Nusselt数增加和剪应力减小。最后,得出的结论是,超疏水表面可以用作被动工具,以提高传热速率并同时降低泵送功率需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号