...
首页> 外文期刊>Journal of Heat Transfer >Direct Contact Condensation Jet in Cross-Flow UsingComputational Fluid Dynamics
【24h】

Direct Contact Condensation Jet in Cross-Flow UsingComputational Fluid Dynamics

机译:使用计算流体动力学的错流直接接触冷凝射流

获取原文
获取原文并翻译 | 示例
           

摘要

The computational fluid dynamics is an important methodology to study the characteristics of flows in nature and in a number of engineering applications. Modeling nonisothermal flows may be useful to predict the main flow behavior allowing the improvement of equipment and industrial processes. In addition, investigations using computational models may provide key information about the fundamental characteristics of flow, developing theoretical groundwork of physical processes. In the last years, the topic of phase change has been intensively studied using computational fluid dynamics due to the computational and numerical advances reported in the literature. Among several issues related to the phase change topic, direct contact condensation (DCC) is widely studied in the literature since it is part of a number of industrial applications. In the present work, DCC was studied using a mathematical and computational model with an Eulerian approach. The homemade code MFSim was used to run all the computational simulations in the cluster of the Fluid Mechanics Laboratory from the Federal University of Uberlandia (UFU). The computational model was validated and showed results with high accuracy and low differences compared to previous works in the literature. A complex case study of DCC with cross-flow was then studied and the computational model provided accurate results compared to experimental data from the literature. The jet centerline was well represented and the interface dynamic was accurately captured during all the simulation time. The investigation of the velocity field provided information about the deeply transient characteristic of this flow. The v -velocity component presented the more large variations in time since the standard deviation was subjected to a variation of about 45% compared to the temporal average. In addition, the time history of the maximum resultant velocities observed presented magnitude from 29 m/s to 73 m/s. The importance of modeling three-dimensional (3D) effects was confirmed with the relevance of the velocity magnitudes in the third axis component. Therefore, the Eulerian phase change model used in the present study indicated the possibility to model even complex phenomena using an Eulerian approach.
机译:计算流体动力学是研究自然界和许多工程应用中的流动特性的重要方法。对非等温流动进行建模可能有助于预测主流流动行为,从而改善设备和工业流程。此外,使用计算模型进行的研究可能会提供有关流动基本特征的关键信息,从而为物理过程发展理论基础。近年来,由于文献中报道的计算和数值方面的进展,使用计算流体动力学对相变的话题进行了深入研究。在与相变主题相关的几个问题中,直接接触冷凝(DCC)在文献中得到了广泛的研究,因为它是许多工业应用的一部分。在当前的工作中,使用具有欧拉方法的数学和计算模型研究了DCC。自制代码MFSim用于在Uberlandia联邦大学(UFU)的流体力学实验室集群中运行所有计算模拟。计算模型经过验证,与文献中的先前工作相比,具有较高的准确性和较低的差异。然后研究了带有横流的DCC的复杂案例研究,并且与文献中的实验数据相比,该计算模型提供了准确的结果。在所有模拟时间内,喷射中心线都得到了很好的表示,并且可以准确地捕获界面动态。速度场的研究提供了有关该流的深瞬时特性的信息。 v速度分量呈现出更大的时间变化,因为标准偏差与时间平均值相比变化了约45%。此外,观测到的最大合成速度的时程呈现出从29μm/ s到73μm/ s的大小。三维(3D)效果建模的重要性已通过第三轴分量中速度大小的相关性得到了证实。因此,本研究中使用的欧拉相变模型表明使用欧拉方法甚至可以建模复杂现象的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号