...
首页> 外文期刊>Journal of Heat Transfer >Linear Stability on the Local Thermal Nonequilibrium Model of Mixed Convection Boundary Layer Flow over a Moving Wedge in a Porous Medium: Viscous Dissipation and Radiation Effects
【24h】

Linear Stability on the Local Thermal Nonequilibrium Model of Mixed Convection Boundary Layer Flow over a Moving Wedge in a Porous Medium: Viscous Dissipation and Radiation Effects

机译:混合对流边界层局部热非纤维模型的线性稳定性在多孔介质中的移动楔上流动流动:粘性耗散和辐射效应

获取原文
获取原文并翻译 | 示例
           

摘要

This paper studies the local thermal nonequilibrium (LTNE) model for two-dimensional mixed convection boundary-layer flow over a wedge, which is embedded in a porous medium in the presence of radiation and viscous dissipation. It is considered that the temperature of the fluid and solid phases is not identical; hence, we require two energy equations: one for each phase. The motion of the mainstream and wedge is approximated by the power of distance from the leading boundary layer. The flow and heat transfer in the LTNE phase is governed by the coupled partial differential equations, which are then reduced to nonlinear ordinary differential equations via suitable similarity transformations. Numerical simulations show that when the interphase rate of heat transfer is large, the system attains the local thermal equilibrium (LTE) state and so is for porosity scaled conductivity. When LTNE is strong, the fluid phase reacts faster to the mainstream temperature than the corresponding solid phase. The state of LTE rather depends on radiation and viscous dissipation of the model. Further, numerical solutions successfully predicted the upper and lower branch solutions when the velocity ratio is varied. To assess which of these solutions is practically realizable, an asymptotic analysis on unsteady perturbations for a large time leading to linear stability needs to be performed. This shows that the upper branch solutions are always stable and practically realizable. The physical dynamics behind these results are discussed in detail.
机译:本文研究了二维混合对流边界层的局部热非预测(LTNE)模型在楔形件上嵌入多孔介质中,在存在辐射和粘性耗散中。认为流体和固相的温度不相同;因此,我们需要两个能量方程式:每个阶段一个能量方程。主流和楔的运动近似于与前缘边界层的距离的功率。 LTNE相中的流动和传热由耦合的部分微分方程控制,然后通过合适的相似性变换减少到非线性常微分方程。数值模拟表明,当传热差距很大时,系统达到局部热平衡(LTE)状态,因此孔隙度缩放导电性。当LTNE强劲时,流体相位比相应的固相更快地反应主流温度。 LTE的状态相当取决于模型的辐射和粘性耗散。此外,数值溶液在变化速度比时成功预测了上部和下部分支解决方案。为了评估这些解决方案的实际上是可实现的,需要进行导致线性稳定性的大时间不稳定扰动的渐近分析。这表明上部分支解决方案始终稳定且实际上可实现。这些结果背后的物理动态详细讨论。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号