首页> 外文期刊>Journal of Heat Transfer >Temperature-Dependent Thermal Boundary Conductance at Metal/lndium-Based Ⅲ-V Semiconductor Interfaces
【24h】

Temperature-Dependent Thermal Boundary Conductance at Metal/lndium-Based Ⅲ-V Semiconductor Interfaces

机译:金属/铟基Ⅲ-V半导体界面处的温度相关的热边界电导

获取原文
获取原文并翻译 | 示例
           

摘要

At the microscale length and smaller, solid-solid interfaces pose a significant contribution to resistance, resulting in a build-up of energy carriers, in turn leading to extreme temperature gradients within a single electronic component. These localized temperature gradients, or "hot spots," are known to promote degradation, thus reducing device longevity and performance. To mitigate thermal management issues, it is crucial to both measure and understand conductance at interfaces in technologically relevant thin film systems. Recent trends in photonic devices have been pushing the consumption of indium in the U.S. to grow exponentially each year. Thus, we report on the temperature-dependent thermal boundary conductances at a series of metal/In-based Ⅲ-V semiconductor interfaces. These measurements were made using time-domain thermoreflectance (TDTR) from 80 to 350 K. The high-temperature thermal boundary conductance results indicate, for these interfaces, that interfacial transport is dominated by elastic transmission, despite varying levels of acoustic mismatch. There is a strong direct correlation between the interfacial bond strength, approximated by the picosecond acoustics, and the thermal boundary conductance values. Both the interfacial bond strength and the overlap in the phonon density of states (PDOS) play significant roles in the magnitude of the thermal boundary conductance values. Measurements are compared against two separate predictive models, one for a perfect interface and one which accounts for disorder, such as interfacial mixing and finite grain sizes.
机译:在微米级长度和较小的尺寸下,固-固界面对电阻有重要贡献,导致能量载体的积聚,进而导致单个电子元件内出现极端的温度梯度。已知这些局部温度梯度或“热点”会促进性能下降,从而降低器件的寿命和性能。为了减轻热管理问题,至关重要的是测量和了解与技术相关的薄膜系统中界面的电导。光子器件的最新趋势一直在推动美国铟的消费量每年呈指数增长。因此,我们报告了一系列基于金属/铟的Ⅲ-V半导体界面上与温度有关的热边界电导。这些测量是使用80到350 K的时域热反射率(TDTR)进行的。高温热边界电导结果表明,对于这些界面,尽管声学失配程度有所不同,但界面传输仍以弹性传输为主。由皮秒声学近似的界面结合强度与热边界电导值之间具有很强的直接相关性。界面结合强度和状态声子密度(PDOS)的重叠都在热边界电导值的大小中起重要作用。将测量结果与两个单独的预测模型进行比较,一个模型用于完美的界面,另一个模型用于解决无序问题,例如界面混合和有限的晶粒尺寸。

著录项

  • 来源
    《Journal of Heat Transfer》 |2017年第3期|22-26|共5页
  • 作者单位

    Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904-4746;

    Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904-4746;

    Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904-4746;

    Fellow ASME Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904-4746;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号