...
首页> 外文期刊>Journal of Heat Transfer >Numerical Analysis of Metallic Nanoparticle Synthesis Using RF Inductively Coupled Plasma Flows
【24h】

Numerical Analysis of Metallic Nanoparticle Synthesis Using RF Inductively Coupled Plasma Flows

机译:射频电感耦合等离子体流合成金属纳米颗粒的数值分析

获取原文
获取原文并翻译 | 示例
           

摘要

A thermal plasma flow is regarded as a multifunctional fluid with high energy density, high chemical reactivity, variable properties, and controllability by electromagnetic fields. Especially a radio frequency inductively coupled plasma (RF-ICP) flow has a large plasma volume, long chemical reaction time, and a high quenching rate. Besides, it is inherently clean because it is produced without internal electrodes. An RF-ICP flow is, therefore, considered to be very useful for nanoparticle synthesis. However, nanoparticle synthesis using an RF-ICP flow includes complicated phenomena with field interactions. In the present study, numerical analysis was conducted to investigate the synthesis of metallic nanoparticles using an advanced RF-ICP reactor. An advanced RF-ICP flow is generated by adding direct current (DC) discharge to a conventional RF-ICP flow in order to overcome the disadvantages of a conventional one. The objectives of the present work are to clarify the formation mechanism of metallic nanoparticles in advanced RF-ICP flow systems and to detect effective factors on required synthesis. A two-dimensional model as well as a one-dimensional model was introduced for nanoparticle growth to investigate effects of spatial distributions of thermofluid fields in RF-ICP flows on synthesized nanoparticles. In an advanced RF-ICP flow, a characteristic recirculation zone disappears due to a DC plasma jet. Larger numbers of nanoparticles with smaller size are produced by using an advanced RF-ICP flow. Thermofluid fields in RF-ICP flows can be controlled by applied coil frequency by means of skin effect. Larger numbers of nanoparticles with smaller size are produced near the central axis. Dispersion of particle size distributions can be suppressed by higher applied coil frequency through control of RF-ICP flows. Applied coil frequency can be a remarkably effective factor to control nanoparticle size distribution.
机译:热等离子体流被认为是一种多功能流体,具有高能量密度,高化学反应性,可变特性和电磁场可控性。尤其是射频感应耦合等离子体(RF-ICP)流具有较大的等离子体体积,较长的化学反应时间和较高的猝灭速率。此外,由于它是在没有内部电极的情况下生产的,因此具有固有的清洁性。因此,认为RF-ICP流对于纳米颗粒合成非常有用。然而,使用RF-ICP流的纳米颗粒合成包括具有场相互作用的复杂现象。在本研究中,进行了数值分析,以研究使用先进的RF-ICP反应器合成金属纳米颗粒。通过将直流(DC)放电添加到常规RF-ICP流中来生成高级RF-ICP流,以克服常规RF-ICP流的缺点。本工作的目的是阐明先进的RF-ICP流动系统中金属纳米颗粒的形成机理,并检测所需合成的有效因素。针对纳米颗粒的生长引入了二维模型和一维模型,以研究RF-ICP流中热流体场的空间分布对合成纳米颗粒的影响。在先进的RF-ICP流中,由于直流等离子射流的作用,回流区消失了。通过使用先进的RF-ICP流程,可以生产出大量具有较小尺寸的纳米颗粒。可以通过趋肤效应通过施加的线圈频率来控制RF-ICP流动中的热流体场。在中心轴附近产生大量具有较小尺寸的纳米颗粒。通过控制RF-ICP流量,可以通过更高的施加线圈频率来抑制粒度分布的分散。施加的线圈频率可以是控制纳米粒度分布的非常有效的因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号