首页> 外文期刊>Journal of Imaging Science and Technology >Computer Simulation Study of the Effect of Grain Size on the Efficiency of Latent-Image Formation
【24h】

Computer Simulation Study of the Effect of Grain Size on the Efficiency of Latent-Image Formation

机译:粒度对潜像形成效率影响的计算机模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

Latent-image formation in AgBr cubes from 0.1 to 0.95-μm edge length has been studied by a computer simulation technique based on the nucleation-and-growth model. Both the depth and density of electron traps were found to affect quantum sensitivity. As the trap depth increases, the trap density must decrease so as to maintain reasonably efficient latent-image formation. Because of the high irradiance conditions used in the simulations, a four-atom minimum developable size leads to an efficiency loss due to high irradiance reciprocity failure. In this case, to maintain reasonable efficiencies, the trap density had to be decreased relative to that for a three-atom minimum developable size. As the grain size increases, the trap density, at a fixed trap depth, must be decreased to maintain high efficiency. This reduction in trap density is due to the effect of grain size on the partitioning between free and trapped states, and the resultant effect on the predominant pathway for recombination. For a constant trap depth of 0.2 eV that may be typical for sulfur-plus-gold sensitization, it is not possible to find a fixed trap density that leads to a size-independent inefficiency. However, if different trap densities are used for different grain sizes, it is possible to find such a condition. This result indicates that electron range limitations due to size alone are not important in explaining the experimentally observed sub-linear dependence of speed on grain size for large grains, at least within the size range studied. When a lower hole mobility is used the dependence of quantum sensitivity on trap density is significantly reduced because the contribution of free-hole/trapped-electron recombination is reduced.
机译:通过基于成核和生长模型的计算机模拟技术,研究了边缘长度为0.1至0.95-μm的AgBr立方体中的潜像形成。发现电子陷阱的深度和密度都会影响量子灵敏度。随着陷阱深度的增加,陷阱密度必须降低,以保持合理有效的潜像形成。由于在模拟中使用了高辐照条件,因此由于高辐照互易性失效,四原子最小可显影尺寸导致效率损失。在这种情况下,为了保持合理的效率,必须相对于三原子最小可显影尺寸降低阱密度。随着晶粒尺寸的增加,必须降低固定陷阱深度的陷阱密度,以保持高效率。陷阱密度的这种降低是由于晶粒大小对自由态和陷阱态之间分配的影响,以及对主要重组途径的合成影响。对于0.2 g eV的恒定陷阱深度(对于硫加金敏化而言可能是典型的),不可能找到导致大小无关的低效率的固定陷阱密度。但是,如果对于不同的晶粒尺寸使用不同的陷阱密度,则可以找到这样的条件。该结果表明,仅由于尺寸引起的电子范围限制在解释实验观察到的大晶粒的速度对晶粒尺寸的亚线性依赖性方面并不重要,至少在所研究的尺寸范围内是如此。当使用较低的空穴迁移率时,由于减少了自由空穴/俘获电子复合的贡献,因此大大降低了量子灵敏度对阱密度的依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号