首页> 外文期刊>Journal of Materials Engineering and Performance >Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses
【24h】

Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses

机译:用于摩擦搅拌焊接计算分析的AA5083 Johnson-Cook材料模型的修改

获取原文
获取原文并翻译 | 示例
           

摘要

Johnson-Cook strength material model is frequently used in finite-element analyses of various manufacturing processes involving plastic deformation of metallic materials. The main attraction to this model arises from its mathematical simplicity and its ability to capture the first-order metal-working effects (e.g., those associated with the influence of plastic deformation, rate of deformation, and the attendant temperature). However, this model displays serious shortcomings when used in the engineering analyses of various hot-working processes (i.e., those utilizing temperatures higher than the material recrystallization temperature). These shortcomings are related to the fact that microstructural changes involving: (i) irreversible decrease in the dislocation density due to the operation of annealing/recrystallization processes; (ii) increase in grain-size due to high-temperature exposure; and (iii) dynamic-recrystallization-induced grain refinement are not accounted for by the model. In this study, an attempt is made to combine the basic physical-metallurgy principles with the associated kinetics relations to properly modify the Johnson-Cook material model, so that the model can be used in the analyses of metal hot-working and joining processes. The model is next used to help establish relationships between process parameters, material microstructure and properties in friction stir welding welds of AA5083 (a non-age-hardenable, solid-solution strengthened, strain-hardened/stabilized Al-Mg-Mn alloy).
机译:Johnson-Cook强度材料模型经常用于涉及金属材料塑性变形的各种制造过程的有限元分析。该模型的主要吸引力来自其数学上的简单性和捕获一阶金属加工效应的能力(例如与塑性变形,变形速率和伴随温度的影响相关的那些效应)。但是,该模型在用于各种热加工过程的工程分析时(即,那些利用高于材料再结晶温度的温度)显示出严重的缺陷。这些缺点与以下事实有关:微观结构的变化包括:(i)由于退火/重结晶过程的操作而使位错密度不可逆地降低; (ii)由于高温暴露导致晶粒尺寸增加; (iii)模型没有考虑动态再结晶引起的晶粒细化。在这项研究中,尝试将基本的物理冶金原理与相关的动力学关系相结合,以适当地修改Johnson-Cook材料模型,以便将该模型用于金属热加工和连接过程的分析。接下来,该模型用于帮助建立AA5083(一种非时效硬化,固溶强化,应变硬化/稳定化的Al-Mg-Mn合金)搅拌摩擦焊过程中的工艺参数,材料微观结构和性能之间的关系。

著录项

  • 来源
    《Journal of Materials Engineering and Performance》 |2012年第11期|p.2207-2217|共11页
  • 作者单位

    Department of Mechanical Engineering, Clemson University, 241 Engineering Innovation Building, Clemson, SC, 29634-0921, USA;

    Department of Mechanical Engineering, Clemson University, 241 Engineering Innovation Building, Clemson, SC, 29634-0921, USA;

    Army Research Laboratory—Survivability Materials Branch, Aberdeen, Proving Ground, MD, 21005-5069, USA;

    Army Research Laboratory—Survivability Materials Branch, Aberdeen, Proving Ground, MD, 21005-5069, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    AA5083; friction stir welding; Johnson-Cook material model;

    机译:AA5083;搅拌摩擦焊;Johnson-Cook材料模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号