首页> 外文期刊>Journal of Materials Research >Enhanced light absorption of ultrathin crystalline silicon solar cells via the design of front nanostructured silicon nitride
【24h】

Enhanced light absorption of ultrathin crystalline silicon solar cells via the design of front nanostructured silicon nitride

机译:通过前纳米结构氮化硅的设计增强了超薄晶体硅太阳能电池的光吸收

获取原文
获取原文并翻译 | 示例
           

摘要

In contrast to traditional approach using Si nanotexture, we propose and investigate the light-trapping enhancement of ultrathin c-Si cells via the design of front nanostructured antireflective layer by using the finite-difference time-domain method, where four nanostructures of nanorod hole (NRH) arrays, nanosquare hole (NSH) arrays, inverted nanocone hole (INCH) arrays, and inverted nanopyramid hole (INPH) arrays are applied to silicon nitride for comparison. Via the simulations and optimizations, it is found that the solar cells with design of inverted nanocone hole arrays can produce the highest short-circuit photocurrent density of 29.46 mA/cm~2 resulting in an enhancement of 29.32% compared with the control group (with 67 nm Si_3N_4). Furthermore, when the optimal cells are integrated with back silver, a photocurrent density of 32.20 mA/cm~2 can be achieved, offering an additional benefit of 2.08 mA/cm~2 compared with 30.12 mA/cm~2 using back aluminum.
机译:与使用Si Nanootexture的传统方法相比,我们通过使用有限差差时域法,通过设计前纳米结构抗反射层的设计,研究并研究超薄C-Si细胞的光捕获增强,其中纳米孔四个纳米结构( NRH)阵列,纳米孔孔(NSH)阵列,倒纳米孔(英寸)阵列,并向倒纳米吡喃孔(Inph)阵列施加到氮化硅以进行比较。 通过模拟和优化,发现具有倒置纳米孔阵列的设计的太阳能电池可以产生29.46mA / cm〜2的最高短路光电流密度,导致与对照组相比增强了29.32%( 67 nm si_3n_4)。 此外,当最佳细胞与后银集成时,可以实现32.20mA / cm〜2的光电流密度,与30.12mA / cm〜2使用后铝相比,提供2.08mA / cm〜2的额外益处。

著录项

  • 来源
    《Journal of Materials Research》 |2021年第3期|668-676|共9页
  • 作者单位

    College of Electrical Engineering and New Energy Hubei Provincial Collaborative Innovation Center for New Energy Microgrid China Three Gorges University 8 University Avenue Yichang 443002 China;

    College of Electrical Engineering and New Energy Hubei Provincial Collaborative Innovation Center for New Energy Microgrid China Three Gorges University 8 University Avenue Yichang 443002 China;

    College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University 8 University Avenue Yichang 443002 China;

    College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University 8 University Avenue Yichang 443002 China;

    College of Electrical Engineering and New Energy Hubei Provincial Collaborative Innovation Center for New Energy Microgrid China Three Gorges University 8 University Avenue Yichang 443002 China;

    College of Electrical Engineering and New Energy Hubei Provincial Collaborative Innovation Center for New Energy Microgrid China Three Gorges University 8 University Avenue Yichang 443002 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号