首页> 外文期刊>Journal of Materials Research >Catalytic performance and SO_2 tolerance of tetragonal-zirconia-based catalysts for low-temperature selective catalytic reduction
【24h】

Catalytic performance and SO_2 tolerance of tetragonal-zirconia-based catalysts for low-temperature selective catalytic reduction

机译:四方氧化锆基催化剂对低温选择性催化还原的催化性能和SO_2耐受性

获取原文
获取原文并翻译 | 示例
           

摘要

MnO_x-CeO_2/t-ZrO_2 catalyst was prepared by impregnation of nanotetragonal zirconia. The NO conversion of 5 wt% MnO_x-CeO_2/t-ZrO_2 catalyst was 68.1% at 100 ℃ while that of 30 wt% MnO_x-CeO_2/t-ZrO_2 catalyst was 97.4%. The x-ray diffraction, Brunner-Emmet-Teller measurements (BET), and H_2-TPR showed surface properties of the prepared catalysts were good for selective catalytic reduction reactions. X-ray photoelectron spectroscopy analysis indicated that Mn~(4+) and Ce~(4+) oxidation states were predominant on the surface of the catalyst and so was lattice oxygen which was conducive to Lewis acid sites. NH_3-TPD test results demonstrated that Lewis acid sites are predominant on the surface of catalyst. The presence of SO_2 reduced the catalyst activity. The realized conversion dramatically decreased to 47% from nearly 100% after 8 h. Characterization of fresh and spent catalysts indicated the deterioration of active component and deposition of NH_4HSO_4 or (NH_4)_2SO_4 contribute to SO_2 poisoning.
机译:通过浸渍纳米四方氧化锆制备了MnO_x-CeO_2 / t-ZrO_2催化剂。 5wt%MnO_x-CeO_2 / t-ZrO_2催化剂在100℃下的NO转化率为68.1%,而30wt%MnO_x-CeO_2 / t-ZrO_2催化剂在NO的转化率为97.4%。 X射线衍射,Brunner-Emmet-Teller测量(BET)和H_2-TPR表明,所制备的催化剂的表面性质对于选择性催化还原反应是良好的。 X射线光电子能谱分析表明,催化剂表面Mn〜(4+)和Ce〜(4+)的氧化态占主导地位,晶格氧有利于路易斯酸位。 NH_3-TPD测试结果表明,路易斯酸位在催化剂表面上占主导地位。 SO_2的存在降低了催化剂活性。 8小时后,已实现的转化率从近100%急剧下降至47%。新鲜和用过的催化剂的表征表明,活性成分的劣化以及NH_4HSO_4或(NH_4)_2SO_4的沉积均导致SO_2中毒。

著录项

  • 来源
    《Journal of Materials Research》 |2016年第17期|2590-2597|共8页
  • 作者单位

    Jangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, China School of Environment, Nanjing Normal University, Nanjing, China Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Controlling, Nanjing Normal University, Nanjing, China;

    Jangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, China School of Environment, Nanjing Normal University, Nanjing, China Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Controlling, Nanjing Normal University, Nanjing, China;

    Jangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, China School of Environment, Nanjing Normal University, Nanjing, China Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Controlling, Nanjing Normal University, Nanjing, China;

    Jangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, China School of Environment, Nanjing Normal University, Nanjing, China Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Controlling, Nanjing Normal University, Nanjing, China;

    School of Environment, Nanjing Normal University, Nanjing, China Nanoparticle and Air Quality Laboratory, Institute of Environmental Engineering, National Chiao Tung University, Taiwan, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号