首页> 外文期刊>Journal of Materials Research >Nucleation and growth model for {110}- and {111}-truncated nanoparticles
【24h】

Nucleation and growth model for {110}- and {111}-truncated nanoparticles

机译:{110}和{111}截短的纳米颗粒的成核和生长模型

获取原文
获取原文并翻译 | 示例
           

摘要

Nanoparticle-sized powders have seen more and more use in many of today's applications. As particle size decreases, many properties change including the ability to embed the small particles in liquids and other media. With decreasing size, however, surface energy becomes more important and can dictate the final shape of the particle. In applications based on polar molecules attaching to the nanoparticle surface, the surface morphology can become a key design parameter. A nucleation and growth model has been constructed for truncated body-centered cubic derivative materials, along with an update to previously published work on face-centered cubic materials. The model shows that for (110)- and (111)-truncations of a cube with a specified surface energy for each surface, the critical nuclei and equilibrium growth shapes are the same, supporting the theory of self-similar growth that had only been mentioned previously, but never proven. In this analysis, saddle points play an important role in determining the critical nuclei for comparison with the equilibrium growth shapes.
机译:纳米级粉末已在当今的许多应用中得到越来越多的使用。随着粒径的减小,许多性能都会发生变化,包括将小颗粒嵌入液体和其他介质中的能力。但是,随着尺寸的减小,表面能变得越来越重要,并且可以决定颗粒的最终形状。在基于附着在纳米颗粒表面的极性分子的应用中,表面形态可以成为关键的设计参数。已建立了一个以截短的体心立方衍生材料为核心的成核和生长模型,并对以前发表的有关面心立方材料的工作进行了更新。该模型显示,对于每个表面具有指定表面能的立方体的(110)-和(111)截断,临界核和平衡生长形状相同,这支持了自相似生长的理论之前提到过,但从未得到证实。在此分析中,鞍点在确定与平衡生长形状进行比较的关键核中起着重要作用。

著录项

  • 来源
    《Journal of Materials Research》 |2015年第20期|3011-3019|共9页
  • 作者单位

    Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 9500 MacArthur Blvd., Naval Surface Warfare Center, Carderock Division, Metallurgy and Fasteners Branch, West Bethesda, MD 20817;

    Intel Corporation, Chandler, Arizona 85226, USA;

    Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA;

    Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号