首页> 外文期刊>Journal of Materials Research >Grain growth resistant nanocrystalline zirconia by targeting zero grain boundary energies
【24h】

Grain growth resistant nanocrystalline zirconia by targeting zero grain boundary energies

机译:靶向零晶界能量的抗晶粒生长纳米晶氧化锆

获取原文
获取原文并翻译 | 示例
       

摘要

Nanocrystalline ceramics offer interesting and useful physical properties attributed to their inherent large volume fraction of grain boundaries. At the same time, these materials are highly unstable, being subjected to severe coarsening when exposed at moderate to high temperatures, limiting operating temperatures and disabling processing conditions. In this work, we designed highly stable nanocrystalline yttria stabilized zirconia (YSZ) by targeting a decrease of average grain boundary (GB) energy, affecting both driving force for growth and mobility of the boundaries. The design was based on fundamental equations governing thermodynamics of nanocrystals, and enabled the selection of lanthanum as an effective dopant which segregates to grain boundaries and lowers the average energy of YSZ boundaries to half. While this would be already responsible for significant coarsening reduction, we further experimentally demonstrate that the GB energy decreases continuously during grain growth caused by the enrichment of boundaries with dopant, enhancing further the stability of the boundaries. The designed composition showed impressive resistance to grain growth at 1100 ℃ as compared to the undoped YSZ and opens the perspective for similar design in other ceramics.
机译:纳米晶陶瓷具有有趣而有用的物理特性,这归因于其固有的大体积晶粒边界。同时,这些材料是高度不稳定的,当在中等高温下暴露时会经受严重的粗化,限制了操作温度并破坏了加工条件。在这项工作中,我们通过降低平均晶界(GB)能量来设计高度稳定的纳米晶氧化钇稳定的氧化锆(YSZ),从而影响了生长的驱动力和边界的迁移率。该设计基于控制纳米晶体热力学的基本方程式,并使得能够选择镧作为有效的掺杂剂,该掺杂剂偏析到晶界并将YSZ边界的平均能量降低到一半。虽然这已经可以导致粗化的明显降低,但我们进一步通过实验证明,由于掺杂剂富集边界,在晶粒生长过程中GB能量不断降低,从而进一步增强了边界的稳定性。与未掺杂的YSZ相比,所设计的成分对1100℃的晶粒生长具有令人印象深刻的抵抗力,这为其他陶瓷的相似设计开辟了前景。

著录项

  • 来源
    《Journal of Materials Research》 |2015年第20期|2991-3002|共12页
  • 作者单位

    Department of Chemical Engineering and Materials Science & NEAT ORU, University of California - Davis, Davis, California 95616, USA;

    Department of Chemical Engineering and Materials Science & NEAT ORU, University of California - Davis, Davis, California 95616, USA;

    Department of Chemical Engineering and Materials Science & NEAT ORU, University of California - Davis, Davis, California, USA and State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China;

    State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China;

    Department of Chemical Engineering and Materials Science & NEAT ORU, University of California - Davis, Davis, California, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号