首页> 外文期刊>Journal of Materials Research >Epitaxial co-deposition growth of CaGe_2 films by molecular beam epitaxy for large area germanane
【24h】

Epitaxial co-deposition growth of CaGe_2 films by molecular beam epitaxy for large area germanane

机译:大分子锗烷的分子束外延生长CaGe_2薄膜的外延共沉积

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional crystals are an important class of materials for novel physics, chemistry, and engineering. Germanane (GeH), the germanium-based analogue of graphane (CH), is of particular interest due to its direct band gap and spin-orbit coupling. Here, we report the successful co-deposition growth of CaGe_2 films on Ge(111) substrates by molecular beam epitaxy and their subsequent conversion to germanane by immersion in hydrochloric acid. We find that the growth of CaGe_2 occurs within an adsorption-limited growth regime, which ensures stoichiometry of the film. We utilize in situ reflection high energy electron diffraction (RHEED) to explore the growth temperature window and find the best RHEED patterns at 750 ℃. Finally, the CaGe_2 films are immersed in hydrochloric acid to convert the films to germanane. Auger electron spectroscopy of the resulting film indicates the removal of Ca, and RHEED patterns indicate a single-crystal film with an in-plane orientation dictated by the underlying Ge(111) substrate. X-ray diffraction and Raman spectroscopy indicate that the resulting films are indeed germanane. Ex situ atomic force microscopy shows that the grain size of the germanane is on the order of a few micrometers, being primarily limited by terraces induced by the miscut of the Ge substrate. Thus, optimization of the substrate could lead to the long-term goal of large area germanane films.
机译:二维晶体是用于新型物理学,化学和工程学的重要材料类别。锗烷(石墨烯(CH)的类似物)的锗烷(GeH)由于其直接带隙和自旋轨道耦合而备受关注。在这里,我们报告通过分子束外延成功地在Ge(111)衬底上共沉积CaGe_2薄膜,并随后通过浸入盐酸将其转化为锗烷。我们发现,CaGe_2的生长发生在吸附受限的生长机制内,从而确保了薄膜的化学计量。我们利用原位反射高能电子衍射(RHEED)探索生长温度窗口,并在750℃下找到最佳的RHEED图案。最后,将CaGe_2薄膜浸入盐酸中以将薄膜转化为锗烷。所得膜的俄歇电子能谱表明已除去Ca,RHEED图案表明单晶膜的面内取向由下面的Ge(111)衬底决定。 X射线衍射和拉曼光谱表明,所得膜的确是锗烷。异位原子力显微镜检查显示,锗烷的晶粒大小约为几微米,主要受Ge衬底误切所引起的台阶的限制。因此,基板的优化可以导致大面积锗烷薄膜的长期目标。

著录项

  • 来源
    《Journal of Materials Research》 |2014年第3期|410-416|共7页
  • 作者单位

    Department of Physics, The Ohio State University, Columbus, Ohio 43210, Department of Physics and Astronomy, University of California, Riverside, California 92521;

    Department of Physics and Astronomy, University of California, Riverside, California 92521;

    Department of Physics, The Ohio State University, Columbus, Ohio 43210;

    Department of Physics and Astronomy, University of California, Riverside, California 92521;

    Department of Chemistry, The Ohio State University, Columbus, Ohio 43210;

    Department of Physics, The Ohio State University, Columbus, Ohio 43210, Department of Physics and Astronomy, University of California, Riverside, California 92521;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号