...
首页> 外文期刊>Journal of Materials Research >In-situ tensile testing of single-crystal molybdenum-alloy fibers with various dislocation densities in a scanning electron microscope
【24h】

In-situ tensile testing of single-crystal molybdenum-alloy fibers with various dislocation densities in a scanning electron microscope

机译:扫描电子显微镜中不同位错密度的单晶钼合金纤维的原位拉伸测试

获取原文
获取原文并翻译 | 示例
           

摘要

In-situ tensile tests have been performed in a dual beam focused ion beam and scanning electron microscope on as-grown and prestrained single-crystal molybdenum-alloy (Mo-alloy) fibers. The fibers had approximately square cross sections with submicron edge lengths and gauge lengths in the range of 9-4μm. In contrast to previously observed yield strengths near the theoretical strength of 10 GPa in compression tests of ~l-3-μm long pillars made from similar Mo-alloy single crystals, a wide scatter of yield strengths between 1 and 10 GPa was observed in the as-grown fibers tested in tension. Deformation was dominated by inhomogeneous plastic events, sometimes including the formation of Liiders bands. In contrast, highly prestrained fibers exhibited stable plastic flow, significantly lower yield strengths of ~1 GPa, and stress-strain behavior very similar to that in compression. A simple, statistical model incorporating the measured dislocation densities is developed to explain why the tension and compression results for the as-grown fibers are different.
机译:在成束和预应变的单晶钼合金(Mo-Alloy)纤维上,在双束聚焦离子束和扫描电子显微镜中进行了原位拉伸测试。纤维具有近似正方形的横截面,其亚微米边缘长度和标距在9-4μm的范围内。与之前观察到的接近10 GPa理论强度的屈服强度在类似钼合金单晶制成的约1-3μm长柱的压缩测试中观察到的相比,屈服强度在1 GPa和10 GPa之间有很大的分散。生长中的纤维在张力下进行了测试。变形主要由不均匀的塑性事件主导,有时包括Liiders带的形成。相反,高度预应变的纤维表现出稳定的塑性流动,屈服强度显着降低,约为1 GPa,应力-应变行为与压缩行为非常相似。建立了一个简单的统计模型,该模型结合了测得的位错密度,以解释为何所生长的纤维的拉伸和压缩结果不同。

著录项

  • 来源
    《Journal of Materials Research》 |2012年第3期|p.508-520|共13页
  • 作者单位

    Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996;

    Karlsruhe Institute of Technology, Institute for Materials Research II (IMF II), 76021 Karlsruhe, Germany;

    Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996;

    Karlsruhe Institute of Technology, Institute for Materials Research II (IMF II), 76021 Karlsruhe, Germany;

    Karlsruhe Institute of Technology, Institute for Materials Research II (IMF II), 76021 Karlsruhe, Germany;

    Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;

    Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号