首页> 外文期刊>Journal of Materials Research >Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion
【24h】

Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion

机译:钨中的氢:吸收,扩散,空位俘获和解聚

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the interaction between atomic hydrogen and solid tungsten is important for the development of fusion reactors in which proposed tungsten walls would be bombarded with high energy particles including hydrogen isotopes. Here, we report results from periodic density-functional theory calculations for three crucial aspects of this interaction: surface-to-subsurface diffusion of H into W, trapping of H at vacancies, and H-enhanced decohesion, with a view to assess the likely extent of hydrogen isotope incorporation into tungsten reactor walls. We find energy barriers of (at least) 2.08 eV and 1.77 eV for H uptake (inward diffusion) into W(001) and W(110) surfaces, respectively, along with very small barriers for the reverse process (outward diffusion). Although H dissolution in defect-free bulk W is predicted to be endothermic, vacancies in bulk W are predicted to exothermically trap multiple H atoms. Furthermore, adsorbed hydrogen is predicted to greatly stabilize W surfaces such that decohesion (fracture) may result from high local H concentrations.
机译:了解原子氢与固体钨之间的相互作用对于发展聚变反应堆非常重要,在该反应堆中,拟议的钨壁将被包括氢同位素在内的高能粒子轰击。在这里,我们报告了这种相互作用的三个关键方面的周期性密度泛函理论计算的结果:H到W的表面到地下扩散,在空位处俘获H以及H增强的去内聚力,以评估可能的相互作用。氢同位素掺入钨反应器壁的程度。我们发现(至少)2.08 eV和1.77 eV的能量壁垒对H(向内扩散)吸收到W(001)和W(110)表面,以及非常小的势垒对逆过程(向外扩散)。尽管预计无缺陷块体W中的H溶解是吸热的,但块体W中的空位预计会放热地俘获多个H原子。此外,据预测,吸附的氢将大大稳定W表面,使得局部H浓度高可能导致脱粘(断裂)。

著录项

  • 来源
    《Journal of Materials Research》 |2010年第2期|315-327|共13页
  • 作者单位

    Department of Chemistry, Princeton University, Princeton, New Jersey 08544;

    Department of Mechanical and Aerospace Engineering, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号