...
首页> 外文期刊>Journal of Materials Research >Identification of viscoplastic material parameters from spherical indentation data: Part I. Neural networks
【24h】

Identification of viscoplastic material parameters from spherical indentation data: Part I. Neural networks

机译:从球形压痕数据识别粘塑性材料参数:第一部分。神经网络

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a new method for the identification of material parameters is presented. Neural networks, which are trained on the basis of finite element simulations, are used to solve the inverse problem. The material parameters to be identified are part of a viscoplasticity model that has been formulated for finite deformations and implemented in the finite element code ABAQUS. A proper multi-creep loading history was developed in a previous paper using a phenomenological model for viscoplastic spherical indentation. Now, this phenomenological model is replaced by a more realistic finite element model, which provides fast computation and numerical solutions of high accuracy at the same time. As a consequence, existing neural networks developed for the phenomenological model have been extended from a power law hardening with two material parameters to an Armstrong-Frederick hardening rule with three parameters. These are the yield stress, the initial slope of work hardening, and maximum hardening stress of the equilibrium response. In addition, elastic deformation is taken into account. The viscous part is based on a Chaboche-like overstress model, consisting of two material parameters determining velocity dependence and overstress as a function of the strain rate. The method has been verified by additional finite element simulations. Its application for various metals will be presented in Part II, [J. Mater. Res. 21, 677 (2006)].
机译:本文提出了一种新的材料参数识别方法。基于有限元模拟训练的神经网络用于解决反问题。待识别的材料参数是粘塑性模型的一部分,该模型已针对有限形变制定并以有限元代码ABAQUS实现。在以前的论文中,使用粘塑性球形压痕的现象学模型开发了适当的多蠕变加载历史。现在,这种现象学模型被更现实的有限元模型所替代,该模型同时提供了快速的计算和高精度的数值解。结果,为现象学模型开发的现有神经网络已从具有两个材料参数的幂定律强化扩展到具有三个参数的Armstrong-Frederick强化规则。这些是屈服应力,工作硬化的初始斜率和平衡响应的最大硬化应力。另外,考虑了弹性变形。粘性部分基于类似于Chaboche的过应力模型,该模型由两个材料参数组成,这些材料参数决定了速度依赖性和过应力与应变率的关系。该方法已通过其他有限元模拟得到验证。其在各种金属中的应用将在第二部分中介绍。母校Res。 21,677(2006)]。

著录项

  • 来源
    《Journal of Materials Research》 |2006年第3期|p.664-676|共13页
  • 作者

    E. Tyulyukovskiy; N. Huber;

  • 作者单位

    Forschungszentrum Karlsruhe, Institut fur Materialforschung 11, a D-76344 Eggenstein-Leopoldshafen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号