首页> 外文期刊>Journal of Materials Research >Transparent-conducting, gas-sensing nanostructures (nanotubes, nanowires, and thin films) of titanium oxide synthesized at near-ambient conditions
【24h】

Transparent-conducting, gas-sensing nanostructures (nanotubes, nanowires, and thin films) of titanium oxide synthesized at near-ambient conditions

机译:在接近环境条件下合成的氧化钛的透明导电,气敏纳米结构(纳米管,纳米线和薄膜)

获取原文
获取原文并翻译 | 示例
           

摘要

A template-based, electroless wet-chemical method for synthesis of nanotubes and nanowires of nanocrystalline anatase titanium oxide (titania) at 45 deg C is reported. Single-nanowire electrical property measurements reveal low dc resistivities (7-21 X 10~(-4) OMEGA cm) in these titania nanowires. In the presence of 1000 parts per million of CO gas at 100 deg C, the resistivity is found to increase reversibly, indicating low-temperature gas-sensing capability in these titania nanowires. Thin films of nanocrystalline anatase titania, deposited using a similar wet-chemical method, also have low room-temperature dc resistivities (6-8 X 10~(-3) OMEGA cm), and they are transparent to visible light. Nanostructure-properties relations, together with possible electrical conduction, optical absorption, and gas-sensing mechanisms, are discussed. The ability to fashion transparent-conducting and gas-sensing nanocrystalline anatase titania into nanotubesanowires and thin films at near-ambient conditions could open a wider field of applications for titania, including nanoelectronics, chemical sensing, solar cells, large-area windows and displays, invisible security circuits, and incorporation of biomolecules and temperature-sensitive moieties.
机译:报道了一种基于模板的化学湿法化学方法,用于在45摄氏度下合成纳米晶锐钛矿型二氧化钛(二氧化钛)的纳米管和纳米线。单纳米线电性能测量表明,这些二氧化钛纳米线的直流电阻率较低(7-21 X 10〜(-4)OMEGA cm)。在100摄氏度下存在百万分之1000的CO气体时,发现电阻率可逆地增加,表明这些二氧化钛纳米线具有低温气体传感能力。使用类似的湿化学方法沉积的纳米晶锐钛矿二氧化钛薄膜也具有较低的室温直流电阻率(6-8 X 10〜(-3)OMEGA cm),并且对可见光透明。讨论了纳米结构与性能的关系,以及可能的导电,光吸收和气体传感机制。在接近环境的条件下将透明导电和气敏的纳米晶锐钛矿型二氧化钛形成纳米管/纳米线和薄膜的能力可以为二氧化钛开辟更广阔的应用领域,包括纳米电子,化学传感,太阳能电池,大面积窗户和显示器,看不见的安全电路以及掺入生物分子和温度敏感部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号