...
首页> 外文期刊>Journal of Materials Research >Analyzing the mechanical behavior of thin films using nanoindentation, cantilever microbeam deflection, and finite element modeling
【24h】

Analyzing the mechanical behavior of thin films using nanoindentation, cantilever microbeam deflection, and finite element modeling

机译:使用纳米压痕,悬臂微束偏转和有限元建模分析薄膜的力学行为

获取原文
获取原文并翻译 | 示例
           

摘要

A comprehensive study was undertaken to identify the extent to which the mechanical properties of thin metal films on substrates could be determined quantitatively from instrumented sharp indentation. The mechanical behavior of thin Cu films on substrates was investigated using three different methods: nanoindentation, cantilever microbeam deflection, and microtensile testing. Finite element calculations of the nanoindentation and microbeam deflection experiments were conducted to extract yield strength and hardening modulus. Systematic experiments were performed to investigate the consistency of the different experimental techniques. The mechanical behavior of the Cu films was observed to depend on the film thickness. However, the results from finite element modeling of nanoindentation and microbeam deflection are quite different. In both cases, unique solutions for yield strength and hardening modulus were found. This is particularly noteworthy for the nanoindentation experiments; it is argued that the substrate destroys the self-similarity that is present during indentation of bulk material using a Berkovich tip. Microbeam deflection experiments seem to be more sensitive to the elastic-plastic transition, whereas the nanoindentation results describe the mechanical behavior at larger plastic strains. This is corroborated by microtensile tests.
机译:进行了一项全面的研究,以确定可以从仪器的尖锐压痕定量确定基材上的金属薄膜机械性能的程度。使用三种不同的方法研究了铜薄膜在基板上的机械行为:纳米压痕,悬臂微束偏转和微拉伸试验。进行了纳米压痕和微束偏转实验的有限元计算,以提取屈服强度和硬化模量。进行系统的实验以研究不同实验技术的一致性。观察到Cu膜的机械行为取决于膜厚度。但是,纳米压痕和微束偏转的有限元建模结果却大不相同。在这两种情况下,都找到了屈服强度和硬化模量的独特解决方案。这对于纳米压痕实验特别值得注意。有人认为,基体破坏了使用Berkovich尖端压入散装材料时存在的自相似性。微束挠曲实验似乎对弹塑性转变更敏感,而纳米压痕结果描述了较大塑性应变下的力学行为。微拉伸试验证实了这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号