...
首页> 外文期刊>Journal of materials science >Nanostructured Ni-doped CuS thin film as an efficient counter electrode material for high-performance quantum dot-sensitized solar cells
【24h】

Nanostructured Ni-doped CuS thin film as an efficient counter electrode material for high-performance quantum dot-sensitized solar cells

机译:纳米结构Ni掺杂的CUS薄膜作为高性能量子点敏化太阳能电池的高效对电极材料

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

High electrocatalytic activity and low charge transfer resistance are the key factors of coutner electrodes (CEs) for high-performance quantum dot-sensitized solar cells (QDSSCs). Hence, it is challenging and highly deisrable to fabricate the CEs with high catalytic activity and low charge transfer resistance for QDSSCs. To address these issues, here, we design and prepare a new catalytic electrode by doping of nickel (Ni) ion in CuS for use as CEs in QDSSCs. The Ni-doped CuS CEs are fabricated via a facile chemcial bath deposition method. Scanning electron microscope study reveals that the Ni-doped CuS exhibits the surface morphology of nanoparticles over nanoflake structrues, while the CuS delivers the nanoflake structures. The Ni-doped CuS provides abundant active sites for reduction of polysulfide redox couple, higher electrical conductivity and offers excellent pathways for electron transfer, which yields the high electrocatalytic activity and delivers the lower charge transfer resistance at the interface of CE/electrolyte. As a result, the TiO_2/CdS/CdSe QDSSCs with Ni-CuS yield a power conversion efficiency (η) of 4.36% with short circuit current density (J_(SC)) of 13.78 mA cm~(-2), open-circuit voltage (V_(OC)) of 0.567 V, and fill factor (FF) of 0.558, which are much superior to that of device with CuS CE (η = 3.24%; J_(SC) = 10.63 mA cm~(-2); V_(OC) = 0.567; FF = 0.546) under one sun illumination (AM 1.5G, 100 mW cm~(-2)). Present work determines that Ni-doped CuS could be a promising CE material for QDSSCs due to its high electrical conductivity, excellent electrocatalytic activity, and lower charge transfer resistance.
机译:高电催化活性和低电荷转移电阻是高性能量子点敏化太阳能电池(QDSSCs)的Coutner电极(CES)的关键因素。因此,制造具有高催化活性的CES具有挑战性和高度可溶解的QDSSCs的低电荷转移性。为了解决这些问题,在这里,我们通过掺杂CU中的镍(Ni)离子来设计和制备新的催化电极,以用作QDSSCs中的CES。 Ni掺杂的CUS CE通过容易化学浴沉积方法制造。扫描电子显微镜研究表明,Ni掺杂的CU在纳米铝饼结构上表现出纳米颗粒的表面形态,而CUS提供纳米蛋糕结构。 Ni-掺杂的CU提供丰富的活性位点,用于还原多硫化物氧化还原耦合,电导率较高,并为电子转移提供优异的途径,从而产生高电催化活性,并在Ce /电解质的界面处提供较低的电荷转移电阻。结果,具有Ni-CU的TiO_2 / CDS / CDSE QDSSCS产生的功率转换效率(η)为4.36%,短路电流密度(J_(SC))为13.78 mA cm〜(-2),开路电路0.567 V的电压(V_(OC)),填充因子(FF)为0.558,其与CUS CE的装置高得多(η= 3.24%; J_(SC)= 10.63 mA cm〜(-2) ; v_(oc)= 0.567; ff = 0.546)在一个太阳照明下(am 1.5g,100 mw cm〜(-2))。目前的工作决定了Ni-Doped CU可以是QDSSCS的有前途的CE材料,因为其高导电性,优异的电催化活性和较低的电荷转移性。

著录项

  • 来源
    《Journal of materials science》 |2020年第2期|975-982|共8页
  • 作者单位

    Department of Electrical Engineering Pusan National University Geumjeong-gu Busan 46241 South Korea;

    Department of Physics United Arab Emirates University Al Ain UAE;

    Department of Electrical Engineering Pusan National University Geumjeong-gu Busan 46241 South Korea;

    Department of Electrical Engineering Pusan National University Geumjeong-gu Busan 46241 South Korea;

    Department of Physics United Arab Emirates University Al Ain UAE;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号