...
首页> 外文期刊>Journal of materials science >Small-diameter tissue engineered vascular graft made of electrospun PCL/lecithin blend
【24h】

Small-diameter tissue engineered vascular graft made of electrospun PCL/lecithin blend

机译:由电纺PCL /卵磷脂混合物制成的小直径组织工程血管移植物

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, natural lecithin was incorporated into cholesterol-poly(e-caprolactone) (Chol-PCL) by solution blending in order to modify the performance of the hydrophobic and bio-inert PCL. The fibrous Chol-PCL/ lecithin membranes were fabricated by electrospinning, and the surface morphology and properties were characterized by scanning electron microscopy, X-ray photo-electron spectroscopy, static water contact angle, and mechanical tensile testing. The blood compatibility of the scaffolds was evaluated by in vitro hemolysis assay. The cytocompatibility of the scaffolds was investigated by cell adhesion and proliferation using bone-marrow mesenchy-mal stem cells (MSCs). Subcutaneous implantation was also performed to evaluate the in vivo inflammatory reaction. The tubular tissue-engineered vascular graft (TEVG) was further constructed by rolling cell sheet comprising fibrous membrane and MSCs. Furthermore, endothelial cells (ECs) were seeded onto the lumen of the graft with the aim to form vascular endothelium. The preliminary results indicate that electrospun Chol-PCL/lecithin scaffolds show improved hemocompatibility and cytocompatibility compared with neat Chol-PCL, and combining the Chol-PCL/lecithin fibrous scaffold with MSCs and ECs with well controlled distribution is a promising strategy for constructing TEVGs.
机译:在本研究中,通过溶液共混将天然卵磷脂掺入胆固醇-聚己内酯(Chol-PCL)中,以改变疏水性和生物惰性PCL的性能。通过静电纺丝制备Chol-PCL /卵磷脂纤维膜,并通过扫描电子显微镜,X射线光电子能谱,静态水接触角和机械拉伸试验表征其表面形态和性能。通过体外溶血测定法评估支架的血液相容性。使用骨髓间充质干细胞(MSC)通过细胞粘附和增殖研究了支架的细胞相容性。还进行了皮下植入以评估体内炎症反应。管状组织工程化血管移植物(TEVG)通过滚动包含纤维膜和MSC的细胞片进一步构建。此外,将内皮细胞(EC)接种到移植物的内腔中,旨在形成血管内皮。初步结果表明,与纯净的Chol-PCL相比,电纺Chol-PCL /卵磷脂支架显示出更好的血液相容性和细胞相容性,并且将Chol-PCL /卵磷脂纤维支架与具有良好控制分布的MSC和EC结合使用是构建TEVG的有希望的策略。

著录项

  • 来源
    《Journal of materials science》 |2012年第11期|2639-2648|共10页
  • 作者单位

    Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China;

    Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China;

    Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China;

    Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China;

    State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China;

    Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号