...
首页> 外文期刊>Journal of Physical Oceanography >On the Role of Temperature and Salinity Data Assimilation to Constrain a Coupled Physical-Biogeochemical Model in the Baltic Sea
【24h】

On the Role of Temperature and Salinity Data Assimilation to Constrain a Coupled Physical-Biogeochemical Model in the Baltic Sea

机译:温度和盐度数据同化在波罗的海限制物理-生物地球化学耦合模型中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

A three-dimensional variational data assimilation (3DVAR) method is implemented in a coupled physical-biogeochemical (CPB) model in the Baltic Sea. This study carries out a 10-yr assimilation experiment with satellite sea surface temperature (SST) and observed in situ temperature (T) and salinity (S) profiles. The impact of the assimilation is assessed with the focus on how the biogeochemical model responds to the improved hydrodynamics. The assimilation of temperature and salinity data yields considerable improvements in the physical model. On a basin scale, the mean bias of SST, T, S, and mixed layer depth (MLD) is decreased by 0.18 degrees C (57%), 0.31 degrees C (49%), 0.34 psu (43%), and 1.8 m (43%), respectively. More importantly, the biogeochemical simulation is improved in response to the physical data assimilation. Compared with in situ observations, the mean biases of chlorophyll a (Chl), dissolved inorganic nitrogen (DIN) and phosphorus (DIP) are decreased by 0.09 mg m(-3) (15.5%), 0.19 mmol m(-3) (9%), and 0.15 mmol m(-3) (23%). Physical data assimilation also improves the simulated variability of Chl, DIN, and DIP and their correlations with observation. Compared with satellite observations, the mean bias of surface chlorophyll is reduced by 0.10-0.32 mg m(-3) especially in the Skagerrak-Kattegat area and Bornholm basin. The decrease of total Chl change is caused by different mechanisms for winter and summer. While the deepened mixed layer acts as a dilution factor in winter, strengthened stratification agrees well with the decrease of chlorophyll in summer. In the vertical, relatively large changes of DIN and DIP occur below 60 m, which corresponds to the mean permanent halocline depth (~60-80 m) of the Baltic Sea.
机译:在波罗的海的物理-生物地球化学耦合(CPB)模型中实现了三维变分数据同化(3DVAR)方法。这项研究使用卫星海面温度(SST)进行了10年的同化实验,并观察了原位温度(T)和盐度(S)剖面。评估同化的影响,重点是生物地球化学模型如何响应改善的水动力。对温度和盐度数据的同化在物理模型中产生了可观的改进。在盆地规模上,SST,T,S和混合层深度(MLD)的平均偏差分别降低了0.18摄氏度(57%),0.31摄氏度(49%),0.34 psu(43%)和1.8 m(43%)分别。更重要的是,响应于物理数据同化,生物地球化学模拟得以改善。与原位观察相比,叶绿素a(Chl),溶解的无机氮(DIN)和磷(DIP)的平均偏差降低了0.09 mg m(-3)(15.5%),0.19 mmol m(-3)( 9%)和0.15 mmol m(-3)(23%)。物理数据同化还改善了Chl,DIN和DIP的模拟变异性以及它们与观测值的相关性。与卫星观测相比,特别是在Skagerrak-Kattegat地区和Bornholm盆地,表面叶绿素的平均偏差降低了0.10-0.32 mg m(-3)。总Chl变化的减少是由冬季和夏季的不同机制引起的。在冬季,加深的混合层是稀释因子,而增强的分层与夏季的叶绿素减少是一致的。在垂直方向上,DIN和DIP的相对较大变化发生在60 m以下,这对应于波罗的海的平均永久垂线深度(〜60-80 m)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号