...
首页> 外文期刊>Journal of Physical Oceanography >Nonlinear Infragravity-Wave Interactions on a Gently Sloping Laboratory Beach
【24h】

Nonlinear Infragravity-Wave Interactions on a Gently Sloping Laboratory Beach

机译:缓坡实验室海滩上的非线性重力波相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

A high-resolution dataset of three irregular wave conditions collected on a gently sloping laboratory beach is analyzed to study nonlinear energy transfers involving infragravity frequencies. This study uses bispectral analysis to identify the dominant, nonlinear interactions and estimate energy transfers to investigate energy flows within the spectra. Energy flows are identified by dividing transfers into four types of triad interactions, with triads including one, two, or three infragravity-frequency components, and triad interactions solely between short-wave frequencies. In the shoaling zone, the energy transfers are generally from the spectral peak to its higher harmonics and to infragravity frequencies. While receiving net energy, infragravity waves participate in interactions that spread energy of the short-wave peaks to adjacent frequencies, thereby creating a broader energy spectrum. In the short-wave surf zone, infragravity-infragravity interactions develop, and close to shore, they dominate the interactions. Nonlinear energy fluxes are compared to gradients in total energy flux and are observed to balance nearly completely. Overall, energy losses at both infragravity and short-wave frequencies can largely be explained by a cascade of nonlinear energy transfers to high frequencies (say, f > 1.5 Hz) where the energy is presumably dissipated. Infragravity-infragravity interactions seem to induce higher harmonics that allow for shape transformation of the infragravity wave to asymmetric. The largest decrease in infragravity wave height occurs close to the shore, where infragravity-infragravity interactions dominate and where the infragravity wave is asymmetric, suggesting wave breaking to be the dominant mechanism of infragravity wave dissipation.
机译:分析了在缓慢倾斜的实验室海滩上收集的三个不规则波浪情况的高分辨率数据集,以研究涉及超重力频率的非线性能量传输。这项研究使用双光谱分析来识别主要的非线性相互作用,并估计能量转移,以研究光谱内的能量流。通过将传输分为四种类型的三重轴相互作用来识别能量流,其中三重轴包括一个,两个或三个次重频率分量,以及仅在短波频率之间的三重轴相互作用。在浅滩区,能量转移通常是从频谱峰值到其高次谐波以及次重力频率。在接收净能量的同时,次重力波参与了将短波峰的能量扩展到相邻频率的相互作用,从而产生了更宽的能量谱。在短波冲浪区,次重力-次重力相互作用得以发展,并且在靠近海岸的地方,它们主导了相互作用。将非线性能量通量与总能量通量的梯度进行比较,观察到几乎完全平衡。总体而言,可以用级联的非线性能量转移到高频(例如,f> 1.5 Hz)来推测能量的消散,这主要是解释了在重力和短波频率上的能量损失。次重力-次重力相互作用似乎会引起更高的谐波,从而允许将次重力波的形状转换为不对称。重力波高度的最大下降发生在海岸附近,其中重力与重力相互作用占主导地位,并且重力波是不对称的,这表明波浪破碎是重力波消散的主要机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号