首页> 外文期刊>Journal of Physical Oceanography >Near-Inertial Internal Waves and Sea Ice in the Beaufort Sea
【24h】

Near-Inertial Internal Waves and Sea Ice in the Beaufort Sea

机译:博福特海中近惯性内波和海冰

获取原文
获取原文并翻译 | 示例
           

摘要

The evolution of the near-inertial internal wavefield from ice-free summertime conditions to ice-covered wintertime conditions is examined using data from a yearlong deployment of six moorings on the Beaufort continental slope from August 2008 to August 2009. When ice is absent, from July to October, energy is efficiently transferred from the atmosphere to the ocean, generating near-inertial internal waves. When ice is present, from November to June, storms also cause near-inertial oscillations in the ice and mixed layer, but kinetic energy is weaker and oscillations are quickly damped. Damping is dependent on ice pack strength and morphology. Decay scales are longer in early winter (November-January) when the new ice pack is weaker and more mobile, decreasing in late winter (February-June) when the ice pack is stronger and more rigid. Efficiency is also reduced, as comparisons of atmospheric energy available for internal wave generation to mixed layer kinetic energies indicate that a smaller percentage of atmospheric energy is transferred to near-inertial motions when ice concentrations are >90%. However, large kinetic energies and shears are observed during an event on 16 December and spectral energy is elevated above Garrett-Munk levels, coinciding with the largest energy flux predicted during the deployment. A significant amount of near-inertial energy is episodically transferred to the internal wave band from the atmosphere even when the ocean is ice covered; however, damping by ice and less efficient energy transfer still leads to low Arctic internal wave energy in the near-inertial band. Increased kinetic energy below 300 m when ice is forming suggests some events may generate internal waves that radiate into the Arctic Ocean interior.
机译:使用从2008年8月至2009年8月在Beaufort大陆坡上一年部署六个系泊设备的数据,研究了近惯性内部波场从夏季无冰条件到冰雪覆盖的冬季条件的演变。 7月至10月,能量被有效地从大气传递到海洋,从而产生近乎惯性的内部波浪。当有冰存在时,从11月到6月,暴风雨还会在冰和混合层中引起近乎惯性的振荡,但是动能较弱,振荡很快得到抑制。阻尼取决于冰袋强度和形态。当新的冰袋较弱且流动性较强时,冬初(11月至1月)的衰变尺度更长,而当冰袋更结实且更坚硬时,冬末(2月至6月)的衰变尺度减小。效率也降低了,因为可将内部波产生的大气能与混合层动能进行比较表明,当冰浓度> 90%时,较小比例的大气能会转换为近惯性运动。但是,在12月16日的一次事件中观察到了较大的动能和剪切力,并且光谱能量升高到高于Garrett-Munk的水平,这与部署期间预测的最大能量通量一致。即使海洋被冰覆盖,大量的近惯性能量也会从大气中游离地转移到内部波段。然而,由于冰的衰减和能量传递的效率较低,仍然导致近惯性带内北极内波能量较低。当冰层形成时,动能增加到300 m以下,这表明某些事件可能会产生内部波,并辐射到北冰洋内部。

著录项

  • 来源
    《Journal of Physical Oceanography》 |2014年第8期|2212-2234|共23页
  • 作者单位

    Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, and NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington ,Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, 3737 Brooklyn Ave. NE, Box 355672, Seattle, WA 98195-5672;

    School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska;

    School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska;

    Oregon State University, Corvallis, Oregon;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号