首页> 外文期刊>Journal of Physical Oceanography >Langmuir-Submesoscale Interactions: Descriptive Analysis of Multiscale Frontal Spindown Simulations
【24h】

Langmuir-Submesoscale Interactions: Descriptive Analysis of Multiscale Frontal Spindown Simulations

机译:Langmuir-亚中尺度相互作用:多尺度正面降落模拟的描述性分析

获取原文
获取原文并翻译 | 示例
           

摘要

The interactions between boundary layer turbulence, including Langmuir turbulence, and submesoscale processes in the oceanic mixed layer are described using large-eddy simulations of the spindown of a temperature front in the presence of submesoscale eddies, winds, and waves. The simulations solve the surface-wave-averaged Boussinesq equations with Stokes drift wave forcing at a resolution that is sufficiently fine to capture small-scale Langmuir turbulence. A simulation without Stokes drift forcing is also performed for comparison. Spatial and spectral properties of temperature, velocity, and vorticity fields are described, and these fields are scale decomposed in order to examine multiscale fluxes of momentum and buoyancy. Buoyancy flux results indicate that Langmuir turbulence counters the restratifying effects of submesoscale eddies, leading to small-scale vertical transport and mixing that is 4 times greater than in the simulations without Stokes drift forcing. The observed fluxes are also shown to be in good agreement with results from an asymptotic analysis of the surface-wave-averaged, or Craik-Leibovich, equations. Regions of potential instability in the flow are identified using Richardson and Rossby numbers, and it is found that mixed gravitational/symmetric instabilities are nearly twice as prevalent when Langmuir turbulence is present, in contrast to simulations without Stokes drift forcing, which are dominated by symmetric instabilities. Mixed layer depth calculations based on potential vorticity and temperature show that the mixed layer is up to 2 times deeper in the presence of Langmuir turbulence. Differences between measures of the mixed layer depth based on potential vorticity and temperature are smaller in the simulations with Stokes drift forcing, indicating a reduced incidence of symmetric instabilities in the presence of Langmuir turbulence.
机译:边界层湍流(包括Langmuir湍流)与海洋混合层中的亚中尺度过程之间的相互作用是通过使用亚近尺度涡流,风和波浪存在时温度前锋降落的大涡模拟来描述的。该模拟使用斯托克斯漂移波强迫解决了表面波平均的Boussinesq方程,其分辨率足以捕获小规模的朗缪尔湍流。为了进行比较,还执行了没有斯托克斯漂移强迫的模拟。描述了温度,速度和涡度场的空间和光谱特性,并对这些场进行了比例分解,以检查动量和浮力的多尺度通量。浮力通量结果表明,朗缪尔湍流抵消了亚中尺度涡旋的再平衡作用,导致小尺度的垂直传输和混合比没有斯托克斯漂移强迫的模拟大4倍。观测到的通量还显示与表面波平均方程或Craik-Leibovich方程的渐近分析结果非常吻合。使用Richardson和Rossby数确定了流动中潜在的不稳定性区域,并且发现,当存在朗缪尔湍流时,混合重力/对称不稳定性几乎是普遍的两倍,这与不对称斯托克斯漂移强迫的模拟相反。不稳定性。基于潜在涡度和温度的混合层深度计算表明,在存在Langmuir湍流的情况下,混合层的深度最高达2倍。在斯托克斯漂移强迫的模拟中,基于潜在涡度和温度的混合层深度测度之间的差异较小,这表明在存在朗缪尔湍流的情况下对称不稳定性的发生率降低了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号