首页> 外文期刊>Journal of Physical Oceanography >Boundary Intensification of Vertical Velocity in a β-Plane Basin
【24h】

Boundary Intensification of Vertical Velocity in a β-Plane Basin

机译:β平面盆地垂直速度的边界强化

获取原文
获取原文并翻译 | 示例
           

摘要

The buoyancy-driven circulation of simple two-layer models on the β plane is studied in order to examine the role of beta in determining the magnitude and structure of the vertical motions forced in response to surface heating and cooling. Both analytical and numerical approaches are used to describe the change in circulation pattern and strength as a consequence of the planetary vorticity gradient. The physics is quasi-geostrophic at lowest order but is sensitive to small nonquasigeostrophic mass fluxes across the boundary of the basin. The height of the interface between the two layers serves as an analog of temperature, and the vertical velocity at the interface consists of a cross-isopycnal velocity, modeled in terms of a relaxation to a prescribed interface height, as well as an adiabatic representation of eddy thickness fluxes parameterized as lateral diffusion of interface displacement. In the numerical model the lateral eddy diffusion of heat is explicitly represented by a resolved eddy field. In the plausibly more realistic case, when the lateral diffusion of buoyancy dominates the diffusion of momentum, the major vertical velocities occur at the boundary of the basin as in earlier f-plane studies. The effect of the planetary vorticity gradient is to intensify the sinking at the western wall and to enhance the magnitude of that sinking with respect to the f-plane models. The vertical mass flux in the Sverdrup interior exactly balances the vertical flux in the region of the strong horizontal transport of the western boundary current, leaving the net flux to occur in a very narrow region near the western boundary tucked well within the western boundary current. On the other hand, if the lateral diffusion of heat is arbitrarily and unrealistically eliminated, the vertical mass flux is forced to occur in the interior. The circulation pattern is extremely sensitive to small net inflows or outflows across the basin perimeter. The cross-basin flux determines the interface height on the basin's eastern boundary and affects the circulation pattern across the entire basin.
机译:为了研究β在确定响应于表面加热和冷却而强迫的垂直运动的大小和结构中的作用,研究了β平面上两层模型的浮力驱动环流。分析和数值方法都用于描述由于行星涡度梯度引起的环流模式和强度的变化。物理学是最低阶的准地转物理,但对跨盆地边界的小的非准地转质量通量敏感。两层之间的界面高度用作温度的模拟,并且界面处的垂直速度由等腰跨速度构成,该速度以弛豫到规定的界面高度的方式建模,并以绝热表示涡流厚度通量的参数化为界面位移的横向扩散。在数值模型中,横向涡流的热扩散由解析涡流明确表示。在更实际的情况下,当浮力的横向扩散主导动量的扩散时,主要的垂直速度出现在盆地边界,就像早期的f平面研究一样。相对于f平面模型,行星涡度梯度的作用是增强西壁的沉陷并增强沉陷的幅度。 Sverdrup内部的垂直质量通量正好平衡了西部边界流的强水平传输区域中的垂直通量,从而使净通量发生在靠近西部边界的非常狭窄的区域中,该区域被塞在西部边界流中。另一方面,如果任意地且不切实际地消除了热的横向扩散,则垂直质量流被迫在内部产生。循环模式对整个盆地周边的小净流入或流出极为敏感。跨盆地通量决定了盆地东部边界上的界面高度,并影响了整个盆地的循环模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号